Surface finish, microhardness and microstructure of laser metal deposited 17-4PH stainless steel

Authors

DOI:

https://doi.org/10.17159/sajs.2022/11152

Keywords:

additive manufacturing, dilution, martensite, microhardness, microstructure

Abstract

Laser metal deposition is a metal-based additive manufacturing technology. It is a very sensitive and complex process because of the different process parameters involved and the interrelations between these parameters. A thorough understanding of the underlying physics of the process is essential in developing a comprehensive database of the properties of materials processed with this technology. The main objective of this study was to investigate the effect of laser power on a laser-deposited 17-4 precipitation hardenable stainless steel alloy. The as-built microstructure, phase composition, microhardness and surface finish were analysed. The results show that a defect-free sample with good metallurgical bonding and minimal dilution can be produced using high laser power in the range 1400–2600 W and a scanning speed of 0.6 m/s. The microstructure in the clad layer was dominated by martensite and an improvement in surface finish and maximum hardness was observed with increased laser power.

 Significance:

To fully benefit from the additive manufacturing technology, a comprehensive database of the material properties of alloys produced with this technology is required. This study expands on the body of knowledge related to the additive manufacturing of a 17-4PH stainless steel alloy, particularly highlighting the possibility of producing fully dense parts using higher laser power and scanning speed. These two parameters could significantly reduce the build time.

Published

2022-09-29

Issue

Section

Research Article

How to Cite

Bayode, A. (2022). Surface finish, microhardness and microstructure of laser metal deposited 17-4PH stainless steel. South African Journal of Science, 118(9/10). https://doi.org/10.17159/sajs.2022/11152
Views
  • Abstract 312
  • PDF 518
  • EPUB 202
  • XML 141