Potential of interval partial least square regression in estimating leaf area index

Authors

  • Zolo Kiala School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa http://orcid.org/0000-0002-5119-738X
  • John Odindi John Odindi School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
  • Onisimo Mutanga School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa

DOI:

https://doi.org/10.17159/sajs.2017/20160277

Keywords:

hyperspectral data, iPLSR, modelling, partial least square regression, tropical grassland

Abstract

Leaf area index (LAI) is a critical parameter in determining vegetation status and health. In tropical grasslands, reliable determination of LAI, useful in determining above ground biomass, provides a basis for rangeland management, conservation and restoration. In this study, interval partial least square regression (iPLSR) in forward mode was compared to partial least square regression (PLSR) to estimate LAI from in-situ canopy hyperspectral data on a heterogeneous grassland at different periods (onset, mid and end) during summer. The performance of the two techniques was determined using the least relative root mean square error to the mean (nRMSEP) and the highest coefficients of determination (R2p) between the predicted and the measured LAI. Results show that iPLSR models could explain LAI variation with R2p values ranging from 0.81 to 0.93 and low nRMSEP from 9.39% to 24.71%. The highest accuracies for estimates of LAI using iPLSR were at mid- and end of summer (R2p = 0.93 and nRMSEP = 9.39%; R2p = 0.89 and nRMSEP = 10.50%, respectively). Pooling data sets from the three assessed periods yielded the highest prediction error (nRMSEP=24.71%). Results show that iPLSR performed better than PLSR, which yielded R2p and RMSEP values ranging from 0.36 to 0.65 and from 28.44% to 33.47%, respectively. Overall, this study demonstrates the value of iPLSR in predicting LAI and therefore provides a basis for more accurate mapping and monitoring of canopy characteristics of tropical grasslands.

Significance: 
  • The relationship between LAI and canopy reflectance can be used in iPLSR modelling to provide more accurate mapping and monitoring of canopy characteristics for land management and conservation.

Published

2017-09-28

Issue

Section

Research Article

How to Cite

Kiala, Z., John Odindi, J. O., & Mutanga, O. (2017). Potential of interval partial least square regression in estimating leaf area index. South African Journal of Science, 113(9/10), 9. https://doi.org/10.17159/sajs.2017/20160277
Views
  • Abstract 579
  • PDF 539
  • EPUB 207
  • XML 233