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ABSTRACTT 
In this case study, we explored the conceptual errors that National Certificate (Vocational) Level 2 
mathematics students at a Technical and Vocational Education and Training (TVET) College in South 
Africa experience in learning functions. Qualitative data were sourced from a sample of Level 2 (L2) 
mathematics students (n=17) from a TVET college through test responses and interviews. The findings 
revealed that the students find it difficult to: recognise a linear function, translate between different 
representations of a linear function, and identify particular components of a linear function. The 
findings generally indicated that the students lack conceptual understanding of the linear function. 
From the interviews, the students pointed to the teachers’ instructional practices as a major contributory 
factor to the identified difficulties they experienced. Specifically, a lack of exposure to instruction and 
assessment tasks that involved all representations of functions hindered a deep conceptual 
understanding of functions. 
 
Keywords: National Curriculum (Vocational) L2, mathematics students, linear function, conceptual 
knowledge, conceptual errors

INTRODUCTIONN 
The concept of function is inarguably one of the most important concepts in school mathematics and 
beyond. As a building block of calculus, the concept plays a fundamental role in creating a pathway for 
related concepts in calculus such as the limit, differentiation, and integration. Also, the function concept 
contextualises mathematics in the real world (Bardini et al., 2014). For this reason, a firm grasp of this 
concept is essential. Sound understanding of function includes being able to: identify a function in its 
various representations and flexibly move between the representations. This knowledge facilitates 
students’ ability to view the different representations of a function as a uniform object (Doorman et al., 
2012), i.e., it is being understood conceptually.

One of the students’ first encounters with the function concept is through the linear function. Although 
linear function might come across as the most uncomplicated compared to other algebraic functions, 
our view is that students tend to struggle to understand it conceptually. Assessing the depth of students’ 
knowledge and understanding of linear function requires instructional tasks that strategically target 
conceptual understanding. Situational tasks that depict real life and involve elements familiar to the 
students are ranked highly in this regard. Such tasks can precede instruction on functions as a means to 
institute sound knowledge of the components where students will be relying solely on intuition and 
informal functional knowledge (Brendefur et al., 2015). The tasks can also be utilised in formal 
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assessment, such as summative assessment, to evaluate the extent to which the concept has been 
grasped. This study forms part of a larger study which explored the difficulties that 4NC(V) L2 students 
(n=17) from a TVET college in South Africa encounter with regard to the conceptual knowledge of 
functions. With the current study, we sought to investigate students’ conceptual knowledge difficulties 
regarding the linear function. We further explored the possible sources of these difficulties.

PProblemm statementt  
NC(V) L2-L4 is a vocational programme which offers an alternative pathway to mainstream high school 
Grades 10-12. Hence the entry requirement is Grade 9 (DHET 2014). This being the case, most, if not 
all, NC(V) Level 2 classes house a combination of students who passed Grade 9 from the mainstream 
schooling system and those who come from ELSEN5 schools. In addition, students who completed 
Grade 12 enrol for the programme due to two factors: (i) the level at which these students pass 
disqualifies them from university entry, and (ii) the limited number of universities in South Africa cannot 
handle a large influx of these students.  In fact, in relation to the students who come from Grade 9 
and/or ELSEN schools, they are likely to present knowledge gabs in certain mathematics concepts.   
One of these gaps is the students’ insufficient knowledge of the linear function – the first function they 
were introduced to in Grade 8. Although linear function appears to be the easiest to understand, some 
parts of this concept are problematic for students (Rakhudu, 2017). Legrande and Psycharis (2014) 
attest that such gaps exist due to imbalanced emphasis on procedural knowledge at the expense of 
conceptual understanding and the compromised foundation of mathematics concepts.

PPurposee andd researchh questionss 
In this paper, we explored the conceptual knowledge difficulties, and the sources experienced by NC(V) 
L2 students with the linear function in one TVET college in Gauteng province, South Africa. To gain 
insight into the students’ conceptual knowledge difficulties and the sources thereof, we were guided by 
the following two research questions: 

What conceptual errors are experienced by NC(V) L2 mathematics students in the learning of a 
linear function?
What are the possible sources of the conceptual errors that NC(V) L2 mathematics students 
experience in the learning of a linear function?

THEE THEORETICALL FRAMEWORK 
We used Sfard’s (1991) ‘Dual nature of mathematical conceptions’ as a theoretical lens to explore the 
students’ conceptual difficulties when learning linear functions. The theory outlines the cognitive 
processes through which knowledge and understanding of mathematical concepts such as functions 
develop. For Sfard (1991), a concept develops through two complementary stages: operationally as a 
process or structurally as an object. The two processes, both significant for the concept to be fully 
developed, occur through three stages: Interiorization, Condensation and Reification. Interiorization
(operational): Learning procedures through which the new concept is constructed. For instance, the 
student is able to generate a graph using a set of ordered pairs or use a contextual/algebraic formula 
to generate a table of values. Condensation (moving from operational, working towards structural): 
The student can condense steps and use shortcuts to arrive at a solution. For instance, the student can 
identify the -intercept and the gradient from an algebraic or contextual representation without first 
substituting by zero. Reification (structural): The student perceives various representations as a unified 
object. The student can identify a function using any of its representations and can compare and 
contrast functions. 
                                                            
4 NC(V) L2-L4: National Curriculum (Vocational), a three-year programme offered at TVET colleges in 
South Africa as an alternative pathway to high school Grade 10-12.
5 ELSEN: Education for Learners with Special Educational Needs.
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The process view of a function is associated with a function as a machine which changes input values 
into corresponding output values, while the structural view is aligned to the function as a set of ordered 
pairs. Whether a representation of a function evokes a process view, a structural view, or both, depends 
on the type of teaching that the student receives and his/her understanding (Septyawan et al., 2019). 
Therefore, for students to be fully competent in working with functions and have a deep conceptual 
knowledge of the concept, they must have reached the reification stage. Notwithstanding the framing of 
our paper on Sfard’s work on the nature of mathematical conceptions, we have also invoked 
constructivist views to gain insights into how conceptual errors are likely to arise when students learn 
linear functions. We support the Piagetian view that learning is characterised by construction of new 
knowledge in authentic contexts (Alanazi, 2016; Major & Mangope, 2012) through the twin constructs 
of assimilation and accommodation (Taber, 2019). Essentially, in the process of constructing 
knowledge, there exist two possibilities of making connections with the existing knowledge: (i) the 
newly-acquired knowledge can be connected with and fit into the relevant already-existing knowledge 
thereby enhancing conception, or (ii) the newly-acquired knowledge can erroneously be connected with 
and fit into the discordant already-existing knowledge thereby creating a misconception. Clearly, in the 
process of constructing knowledge, therefore, misconceptions are likely to be the product of knowledge 
construction; however, they should be viewed as an opportunity to learn (Mulungye et al., 2016).  

 
LITERATURE REVIEW 
The importance of teaching and learning functions for conceptual understanding is widely documented. 
Most of the available research highlights the difficulties experienced in teaching and learning this 
concept at the school and university levels (Zandieh et al., 2017; Chimhande et al., 2017). We 
acknowledge a few studies focusing on the teaching and learning of functions at TVET Colleges in 
South Africa (Mofolo-Mbokane, 2011; Rakhudu, 2017). We have noted the scarcity of similar studies 
which draw attention to the linear function, specifically at TVET colleges in the NC(V) programme. The 
study seeks to highlight conceptual errors that mathematics students experience when learning the 
concept of functions.. In the next sections we discuss the conceptual understanding and common 
conceptual errors committed by students when working on mathematical tasks involving functions. 
 
RRepresentations of the linear function 
Exposure to all representations of functions encourages structural conception, which results in a 
conceptual understanding of functions (Septyawan et al., 2019). We scanned the NC(V) L2 
mathematics curriculum document (Subject Guidelines, henceforth referred to as SG) together with 
three prescribed textbooks to find out how they present a linear function different representation. The 
discoveries we made are discussed in the next two paragraphs. 
 
The types of representations displayed in the three textbooks are now indicated, with the number in 
brackets indicating the number of texts from which a particular representation is found: a mapping (2), 
a graph (3), an equation (3), and a table (3). The absence of contextual representations in three of the 
four documents was found to be peculiar. By contextual representations, we are referring to what is 
commonly known as word problems. Only one of the textbooks (Daniels et al., 2010) contains one 
contextual representation of a linear function as an assessment task. We also found it odd that a few 
more of these contextual representations appear in another chapter, which is simultaneous equations. 
Secondly, instead of the two closely related topics being taught in succession, they are separated by 
another topic. This separation makes integrating the two topics difficult and denies students the 
opportunity to make formidable links between the two. 
 
Daniels et al. (2010) address conceptual knowledge in two of the six tasks on graphical representations 
in their textbook, while the other tasks address students’ knowledge of procedures to draw a graph 
using various options. The other two textbooks (van Rensburg & Mapaling, 2017; Hurjunlal et al., 
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2012) address only the knowledge of procedures as far as graphical representations are concerned. 
This analysis reveals that the prescribed textbooks mainly address procedural knowledge of a linear 
function, promoting the process conception while neglecting structural conception.

SStudents’’ errorss inn representationn off aa functionn 
Undoubtedly, contextual representations are significant in developing a deep knowledge of functions. 
These are, however, marred by interpretation errors. Students who are not first-language English 
speakers face the dual hurdle of interpreting the English language and the mathematical language in 
the problem (Sepeng & Madzorera, 2014; Martin, Suryadi & Juandi, 2019). Early exposure becomes 
important to promote familiarity with the representations. Powell and Fusch (2014) suggest screening 
students for difficulties with contextual problems as early as second grade to assist them in reasoning 
algebraically.

Converting from one representation of a function to another is termed translation (Nitsch et al., 2015). 
Brendefur et al. (2015) established that students tend to struggle with some translations, particularly 
when working with contextual representations. For example, students might write correct algebraic and 
descriptive rules from a contextual representation and yet present incorrect graphs for the same task 
(Brendefur et al., 2015). Similarly, Wilkie and Ayalon (2018) also observed that students could 
determine the correct gradient value from a real-life tabular representation yet could not identify the 
value of the same gradient from graphical and algebraic representations. The students’ fixation on 
situational dynamics might have possibly led them to lose the mathematics embedded in the task 
(Brendefur et al., 2015). A lack of exposure to contextual representations might also make it difficult for 
students to transfer knowledge of the same concept across different formats (Wilkie & Ayalon, 2018). 

One of the requisite mathematical skills for learners to solve context-rich or unstructured problems 
is conceptual understanding (Ogilvie, 2009). Conversely, context-rich problems have been linked to 
improving learners’ conceptual understanding (Gijsbers, 2020). It can, therefore, be concluded that 
translating functions represented in context-rich formats to other representations such as numeric, 
graphical and/or algebraic/equation representations requires students to be well grounded in 
conceptual understanding of the concept of function, including linear function. 
 
Componentss off aa linearr functionn andd theirr conceptuall errorss 
In order to understand a function as a coordinated, intact structure, the components involved in its 
construction should first be known. For a linear function, such fundamental components are the 
gradient (slope) and the y-intercept, which can be easily identified from the linear equation 
or or . Since these components are abstract mathematical constructs (Sfard, 
1991), same as the linear function, it becomes difficult to teach or even assess them conceptually 
(Ackakin, 2018). Nitsch et al. (2012) contend that there are errors that are associated with the students’ 
understanding of the purpose of the different components of the graphs in the context of understanding 
of a function. There are errors that relate to the understanding of the gradient, such as failure to 
interpret the meaning of the gradient of a line graph in real-life contexts (Roux et al., 2015).

UUnderstandingg andd conceptuall errorss off thee gradientt 
Moore Russo et al. (2011) state that  the gradient can be perceived as an algebraic ratio 

; a physical property (property of line often described using expressions 

like incline, pitch, steepness, slant, and tilt), or a functional property (rate of change between variables). 
In the school mathematics curriculum in South Africa, students are introduced to the gradient at Grade 
9 as an algebraic ratio of the vertical distance to the horizontal distance or ‘rise over run’, using a 
right-angled triangle (Department of Basic Education [DBE], 2011). Crawford and Scott (2000) lament 
that this introduction makes it difficult for students to understand the gradient as the rate of change of 
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two related quantities. Instead, the suggestion is for this introduction to be taught through practical 
examples that depict students’ real-life contexts. For example, pricing a particular item from a local 
grocery store could serve as the rate of change, which is the cost per unit item. The task can be based 
on one item, with students noticing the constant increase in the cost as the number of the same item 
increases. Different translations can be performed within the task, with the gradient being interpreted in 
each case to benefit students’ understanding. The rise-over-run formula (algebraic representation) can 
be brought into the lesson after completing the task, as an understanding of the gradient would have 
been established.

One of the indicators of conceptual understanding is the ability to recognise the same concept in
different contexts. Such competence was found to be lacking among high school students who 
participated in a Croatian study (Planinic et al., 2012). The students were presented with a pair of 
questions on the positive gradient of a line and another pair on the negative gradient. In each pair, 
one question was asked from a mathematical context, while the other was asked from a physics 
context. The findings revealed that the students performed better in the mathematics questions in 
comparison with the physics questions. It is assumed that using the word ‘slope’ (synonym of gradient) 
assisted the students in responding correctly to the mathematics questions (Planinic et al., 2012).

Conversely, the physics question required students’ understanding of acceleration as the rate of change 
of velocity, which students could not interpret as the gradient. Also, the students could identify the 
graphs with positive and negative gradients in the physics question but could not motivate their 
answers. This might indicate that the students memorised the relationship between the gradient and the 
shape of the line without real understanding (Birgin, 2012). 

Using tasks familiar to students’ contexts appears to be an effective strategy to enhance understanding 
of the gradient. It is, however, equally important to facilitate the ability to apply this knowledge in all 
functional representations. Stump (2001) used situational problems in words, pictures, and graphs to 
investigate high school students’ understanding of gradients. The pictures presented a gradient as a 
measure of steepness, while the word problems and graphical representations focused on a gradient 
as a measure of the rate of change. The students presented a better understanding of the gradient as a 
measure of the rate of change than as a measure of steepness. It was further observed that the students 
provided more accurate descriptions of rates of change from the problems compared to graphical 
representations. Bannerjee (2016) also reported that students found it difficult to interpret the rate of 
change of variables from practical problems in graphical and tabular form. This discussion highlights 
the difficulties that students seem to have with interpreting the gradient in different representations. 

UUnderstandingg andd conceptuall errorss off thee y-interceptt  
The y-intercept is not usually emphasised much during teaching a linear function (Hattikudur et al., 
2012). Teachers seem not expect students to struggle with the concept of y-intercept since it can be 
easily identified from the equation as the value of when . Difficulties with this 
component, if present, might go unnoticed due to the type of tasks used to assess it. Students are 
usually given simple tasks to identify the y-intercept from a graph or an equation. It has, however, 
emerged from some studies (Crawford & Scott, 2000; Hattikudur et al., 2012; Thomson, 2015) that 
assessing knowledge of the y-intercept in other means, such as verbal situations, might reveal gaps in 
students’ understanding of the -intercept. 

Most of the increasing linear functions at the introductory level have a y-intercept at zero, leading 
students to believe that all linear graphs must start at the origin (Hattikudur et al., 2012). This practice 
handicaps students because they struggle to position the y-intercept on a graph if it is elsewhere except 
the origin. Another observation was that the students could view qualitative graphs as objects while 
working with quantitative graphs evoked a process conception. Once data are presented in numerical 



 
 

  

 
The Independent Journal of Teaching and Learning - Volume 18 (1) / 2023 
Formerly The Journal of Independent Teaching and Learning 

86
 

form, students become fixated on discrete points and hence lose the object conception (Hattikudur et 
al., 2012). Crawford and Scott (2000) suggest that the power of visualisation might assist students in 
understanding the y-intercept. Tasks, where students have to draw and compare several graphs while 
verbalising their observations might help establish knowledge of the y-intercept (Crawford & Scott, 
2000). In other words, visualisation and verbalisation should precede the definition, description and 
computation of the y-intercept instead of the order being reversed as is usually the case.  
 
Acquiring a sound knowledge of functions requires a teacher who is knowledgeable of the content and 
pedagogy. Such a teacher will demonstrate a complete conception of a function (Septyawan et al., 
2019) in the planning, pacing and presentations of the lessons. Concerns are raised that some 
teachers’ content knowledge of functions is inadequate due to the type of preparation programmes 
they have undergone (Adler 2017; Makonye, 2011). These limitations make it difficult for the teachers 
to recognise the students’ misconceptions and to design assessments that elicit students’ thinking 
(Ibeawuchi 2010; Makonye, 2011).  
 
RESEARCH METHODOLOGY 
Seventeen (17) NC(V) L2 students were conveniently sampled to participate in this case study. 
Qualitative data were collected through an achievement test and interviews. The self-designed 
achievement test, first used in a larger study, originally consisted of three (3) questions. For this study, 
we focused on question 1.3 of the original test, as it focused solely on the linear function. For this study, 
the question (original 1.3) will be referred to as question 1. The question, a contextual representation of 
a linear function followed by five (5) sub-questions, was meant to assess students’ knowledge of a 
linear function in its different representations (see Table 1). 
 

Table 1 
Questions focusing on linear function 

  
Question 1: Mmabathoo is a third-yyear 
student at a TVET college and works as a 
plumber during weekends. She charges 
call-out fee of R150.00 and an additional 
R60.00 per hour for the work she does for  
a client. 
  

1.1. CComplete the table below indicating the 
relationship between the number of hours and thee  
amount of money Mmabatho will earn. 

  
Number of hours  0  1  2  3  

Amount earned      
    
1.2. Write down an expression (in words or symbols) 

that can be used to represent the amount of 
money that Mmabatho charges the client for a 
plumbing job. 

1.3. If this scenario has to be represented as a graph, 
what type of graph will be produced? 

1.4. Which component/feature of that graph 
represents Mmabatho’s call-out fee? 

1.5. Which component/feature of that graph does the 
R60,00 that Mmabatho charges per hour 
represent? 

 
Students were required to demonstrate their competence in performing the three different translations 
(switching between three different representations) of a linear function as a prominent indication of 
conceptual understanding, which may lead to conceptual errors when not acquired. Sfard’s (1991) 
stage (that each translation represents is indicated next to each question. 
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 contextual-numeric: translation between a contextual representation and a numeric table 
(question 1.1) – interiorisation. Interiorisation, demonstrated by a student’s ability to find the 
output values by means of substituting the input values into the formula in the learning of linear 
function concept.  

 contextual-algebraic: translation between a contextual representation and an algebraic 
expression (question 1.2) – condensation. In the context of linear functions problem solving, this 
stage is characterised by activities such as generating a graph from its algebraic formula, as well 
as combining various functions and see the relationship between them. 

 contextual-graphical: translation between a contextual representation and a graph (questions 
1.3, 1.4 and 1.5) – reification. The student who has reached this stage is able to identify a 
function by means of any of its representations, provide an accurate, correct definition of a 
function, and determine the values of unknown parameters in the equation of a function, among 
other competencies. 

 
After marking the test, six (6) students were purposively sampled for the subsequent interviews as they 
responded to almost all the questions in the test.  The semi-structured, open-ended interviews assisted 
us in gaining an in-depth understanding of students’ misconceptions about the linear function and 
corroborated the data obtained from the analysis of written responses (Wahyuni, 2012). The students 
were interviewed in pairs due to time constraints while preparing for the mid-year examinations. The 
pairs were as follows: Student  E with Student  K, Student  D with Student  G, and Student  H with Student  L. 
The videotaped interviews, which were later transcribed, took place over two consecutive days. 
  
Data analysis took the form of thematic analysis of the students’ test scripts. Thematic codes (Gibbs, 
2013) were created from the students’ responses and aligned with Sfard’s levels of concept 
development which were considered helpful in answering the research questions. Drawing from the 
work of Braun and Clarke (2006) on conducting thematic analysis, our analysis was characterised by 
both the inductive and deductive analysis; however, gravitated more towards the latter due to our 
understanding of Sfard’s levels of conceptualisation which include interiorisation, condensation and 
reification. The three (3) stages of conception, aligned to the codes and sub-questions of the test are 
presented in Table 2 as follows:  
 
 

Table 2:  
Levels of concept development used for the analysis of data and the findings of the study 

 
Level  Description  Test item(s)  
Identification and 
recognition of functions 
(Condensation) 
  

Relates to the students’ difficulties in identifying 
functions. 

Sub-question 1.3 

Knowledge of different 
representations 
(Interiorisation, 
CCoonnddeennssaattiioonn,,  RReeiiffiiccaattiioonn))  

Relates to the difficulties students have in 
translating between different representations of 
functions. 

Sub-question 1.1, 
1.2, and 1.3 

Knowledge of the 
components and behaviourr  
ooff  aa  ffuunnccttiioonn  ((RReeiiffiiccaattiioonn))    

Relates to students’ knowledge difficulties with 
regard to the components of functions and the 
meaning they hold. 

Sub-questions 1.4 
and 1.5 
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FINDINGS  
This section discusses the findings based on the three categories used to analyse the data. Snapshots of 
some of the students’ work from the test and extracts from the interviews are used as illustrations to 
contextualise the findings. The findings revealed some conceptual errors, indicating that most of the 
sampled students found it difficult, if not impossible, to link the different representations of a linear 
function. 
 
Firstly, we present a summary of the students’ responses to the test items in Table 3. 
 

Table 3:  
Summary of students’ responses to question 1 

  
 
Sub-
qquueessttiioonn  

Number of students and their responses  
Correct response  Erroneous responses   No response  

1.1  6 11   0 
1.2  3 14   0 
1.3  6   4   7 
1.4  0   4 13 
1.5  0   0 17 
 
None of the students responded correctly to all four sub-questions. Sub-question 1.5 was not 
responded to by all 17 students. Dissemination of the findings, according to Sfard’s levels of 
conceptualisation the three categories which were used for data analysis, follows.  
 
 
Condensation Levels - Identification and recognition of functions 
Sub-question 1.3 required the students to write down the graph type that best represents the scenario. 
Six of the 17 students correctly identified a linear graph as the best scenario representation.  
 
Oddly, turning to sub-question 1.1, four of the six students who presented correct table values could 
not recognise that the table represented a linear graph. The students were asked during the interviews 
whether they attempted to draw the graph in response to the sub-question. All four of the six students 
who presented the correct table values in sub-question 1.1 said the idea did not occur because the 
question did not ask them to sketch the graph. They also indicated that they wrote the first name they 
remembered because they got confused and did not understand what the question actually required. 
Although all four of the six students who presented correct tables in sub-question 1.1 recognised the 
table as representing a linear function, they were unable to justify their responses. The students 
committed a conceptual error in the manner in which they linked the numeric table to a linear graph. 
 
  
Combination of Interiorisation, Condensation and Reification Levels - Knowledge of different 
representations (translations) 
Conceptual knowledge of functions is characterised by students’ flexibility to relate different 
representations of a concept (Kilpatrick, Swafford & Findell, 2001; Nitsch et al., 2015; Sfard, 1991). 
The study focused on three translations: contextual-numeric, contextual-algebraic, and contextual-
graphical. 
 
Contextual-numeric translation 
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Sub-question 1.1 required the students to complete a table by determining output values (amount 
earned) for the given input values (number of hours) using the scenario (contextual representation of a 
linear function). Some of the responses are presented in Figure 1.  

 
Figure 1:  

Students’ table of values (sub-question 1.1) 
 

 

Student E 

 
Student O 

 
Student A 

 
Six of the 17 students presented correct output values, while 11 students presented a variety of 
conceptual errors. Two of the six students were among those who were interviewed, and they explained 
their calculations this way:  
 

Student E: Well...the plumber charges a 150 call-out fee plus 60 rands neh? This means if she 
works for one hour she will be paid 150+60 which is 210. For two hours it will be double that 
amount, and so on and so on. 

 
 

Student O: For one hour, Mmabatho charges 60 rands...but there is an additional charge of 
150 rands which means you have to pay her 210. When she works for two hours she will 
charge double, which is 420. For three hours it become (sic) three times the previous charge. 

 
Both Student E and student O did not understand that the call out fee was separate from the charge-
per-hour fee. 
 
Contextual-algebraic translation 
Sub-question 1.2 required the students to write the expression that best represented the scenario. Some 
of the students’ conceptual errors are shown in FFigure 2. It would be a contextual-algebraic translation 
for students who used the scenario to respond to this question. On the other hand, for those students 
who could have used the table (item 1.2) in their response, it would be a numeric-algebraic translation. 
 

Figure 2: 
  Students’ conceptual errors in their responses to sub-question 1.2 

  

 
Student H 

 
Student D 
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Correct expressions were presented by three of the seventeen students, two of them in words, while the 
third student used symbols. For two of these three students, the expression correlated with their table of 
values (sub-question 1.1), while the third student could not link the correct expression with the 
calculated values. 

The interviewer asked for Student D’s understanding of the link between the numeric table and the
equation she presented. 

Interviewer: How did you use the information in the table to help you with the equation?

Student D: I just filled the table using the given information. For 1.2 I used the Tn formula, and 
substituted by 210, because it is the first term.

Interviewer: What about the other 210 you used to substitute ?

Student D: I said 420 minus 210, that’s how I got 210. The common difference.

Interviewer: Did you get the same 210 when using the last two amounts (for 2 hours and 3 
hours) from your table to obtain the common difference?

Student D: I didn’t check.

Student H also said that he did not verify whether the table of values matched the expression he wrote.

Both Student D and Student H demonstrated that they lacked the competence of linking a contextual 
linear function with the algebraic representation. Of the same function. The two students therefore 
displayed conceptual errors through their workings and explanations. 
 
Contextual-graphicall translationn 
Sub-question 1.3 addressed the first category (recognition of functions) and the contextual-graphical 
translation since it required students to match the scenario to a relevant graph. Other students could 
have possibly used the algebraic expression (sub-question 1.2) in their response, meaning they instead 
performed an algebraic-graphical translation. For students who used the table of values (sub-question 
1.1) to respond to sub-question 1.3, they performed a numeric-graphical translation. The findings 
regarding responses to sub-question 1.3 have already been presented under category 1.
 
Condensationn Level-- Knowledgee off componentss andd behaviourr off aa functionn 
Sub-questions 1.4 and 1.5 were about the components of the function, namely the gradient and y-
intercept. The students were required to state what components were represented by the call-out fee 
and the hourly rate, respectively. No correct response was recorded for both sub-questions. While four 
students responded incorrectly to sub-question 1.4, all seventeen did not respond to sub-question 1.5. 

The interviewer was curious about Student K’s response that the call-out fee charged by the plumber 
represents the y-axis. She asked him what he meant, and his response was:

Student K: The 150 call-out fee is charged to all clients for transport, I guess. So, if the job 
takes less than one hour, she will charge you 150 anyway. So, I used the table to draw the 
straight-line graph, and it cross on 150.

When asked to point to the y-axis on a graph with the y-intercept at (0;2), Student K pointed to the y-
intercept and said: 
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Here, where the graph cuts.

The interviewer then handed Student K his script and asked him to calculate the gradient he correctly 

referred to in sub-question 1.3 using the numeric table. The student used the formula with 

two pairs of points to arrive at 60 as the gradient. 

Interviewer: What is that which you have just calculated?

Student K: The gradient of the straight line.

Interviewer: What does that represent in terms of the plumber scenario?

Student K: How much she charges per hour, err…her rate.

Interviewer: So why did you not give that correct answer in the test?

Student K: I didn’t know at that time that it was the gradient, it just occurred to me now when 
you asked. They don’t teach us the gradient like that, only the formula to find it, and that it is 
positive when and negative when…that sort of thing.

Students K’s verbal response revealed a lack deep knowledge of the gradient and the y-intercept. The 
students’ inability to identify the gradient and the y-intercept from the contextual linear function shows 
fragmented knowledge, which led to the conceptual error that the student committed.

DISCUSSIONN 
Knowledge and understanding of a concept occur through three cognitive stages: interiorisation, 
condensation, and reification (Sfard, 1991). Students must go through all three stages to achieve both 
the process and structural views of concepts such as functions. It is only then that it can be established 
that the concept is fully developed and is being understood conceptually. Students’ flexibility 
characterises this full development with all representations in terms of identification and behaviour of 
the function itself and its components. 

The test's highest number of correct responses was 6/17 (35,3%), achieved in sub-questions 1 and 3. In 
sub-question 1, the students had to construct a table of values using the information from the word 
problem, a low cognitively demanding task. The interviewed students revealed that the correct 
responses in sub-question 3 were mostly coincidental because the linear graph was the first name that 
they could think of, which happened to be correct. It, therefore, became apparent that there was little 
or no thought process involved since the students did not perform any translation in their responses. 
There were three correct responses in sub-question 2, which required an algebraic representation, a 
medium cognitive demand task. The last two sub-questions, high cognitive demand tasks, did not yield 
any correct response. From this observation, it appears that most students’ conception of a linear 
function is at the interiorisation stage - the first of the three stages. Although sub-question 3 also 
received an equal percentage as sub-question 1 in terms of responses, a revelation by the interviewed 
students that they just guessed the correct answer suggests that they are not yet at the reification stage 
of conception (Sfard, 1991) of a linear function.

In line with previous studies (Cansiz, K ç k & 
to regard each representation in isolation from the others. Constructing a numerical table appears to 
be easier for students than other translations (Ronda 2015, Brendefur et al., 2015). Similar to Adu-
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Gyamfi, Bosse and Chandler’s (2017) findings, determining the algebraic expression proved to be a 
more cognitively demanding task than working from the expression to the numeric table and then to 
the graph. The students’ ability to present the correct table of values but failing to translate the 
information into a correct algebraic expression is evidence of superficial knowledge of the linear 
function (Doruk, 2019). This finding shows that the students have not yet reached the condensation 
stage of conception (Sfard, 1991) of a linear function.

Interviewing the students provided first-hand information regarding their thinking, knowledge and 
misconceptions about the linear function. The students revealed that they struggled to respond to the 
test items correctly as they were not familiar with contextual representations of a function (Thomson 
2015). These obstacles also appeared to have a lot to do with the type of instruction the students 
received from the current level and previous grades. Functions were taught according to the textbook 
they used, as follows: 

algebraic expression given table of values/critical points sketch a graph. 

This finding implies that the type of teaching the students are exposed to impedes their ability to 
understand the linear function conceptually as a unified object with different representations. The 
students struggle with other representations of a linear function, particularly the contextual 
representation, which appears to be a consequence of a lack of exposure to such representations. This 
calls for mathematics teachers to strive for instructional practices that harness procedural knowledge 
and conceptual understanding of functions and other related mathematical concepts.

It is puzzling that even the students who presented correct equations were unable to recognise the call-
out fee and hourly rate as the y-intercept and gradient, respectively. This difficulty confirms the findings 
by Wilkie and Ayalon (2018) that students could calculate the correct gradient value from a real-life 
table but did not understand it as the rate of the change. It became apparent that the students 
memorised procedures without understanding the meaning behind those procedures' concepts. 
Confusing the y-intercept with the y-axis also indicated a struggle with the vocabulary used in functions. 
These difficulties are, therefore, indicative of language challenges (Sepeng & Madzorera, 2014) and 
teaching practices that emphasise procedural rather than conceptual knowledge (Birgin, 2012). 
Teachers should, therefore, structure their instruction such they identify or design purposeful 
instructional tasks to facilitate students’ understanding. While memorisation, often through drill and 
practice, of mathematical facts has a role to play in mathematics learning, it should be preceded by in-
depth understanding of the concepts (Sfard, 1991). It is equally important to emphasise the vocabulary 
of such concepts within context-rich word problems so that the mathematics does not become lost in 
translation.

The findings indicate that six students’ conception of a function is at the interiorisation stage (Sfard, 
1991) since they could calculate correct output values using the given input values. This is the entry-
level of concept development. Three of these six students who could present correct algebraic 
expressions of the word problem appear to be at the condensation stage (Sfard, 1991). This second 
level of concept development is demonstrated by students’ ability to relate different representations of 
the same function. Although these students were competent in performing the two translations, they 
could not identify the gradient and y-intercept of the linear function from the word problem. This 
finding indicates that none of the students has reached the reification stage, which enables viewing a 
function in all its representations as a unified object (Sfard, 1991). The findings generally indicate that 
the students’ concept development is incomplete.
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CONCLUSION 
The ability to identify a function and its components in various representations means that the function 
is viewed as a unified object. This is evidence of a fully developed function concept (Sfard, 1991). The 
students in this study found it difficult to (1) correctly identify a linear function in its contextual 
representation, (2) translate between the different representations of a linear function, and (3) identify 
components of a linear function such as gradient and y-intercept from a contextual representation. The 
findings are a testimony of the students’ underdeveloped linear function conception. The students’ 
incapacity to perceive different representations of a function as a unified whole indicates that they have 
not yet advanced to the reification stage of function conception (Sfard, 1991). Only three of the 17 
students demonstrated that they were at the condensation stage of understanding a linear function, 
while the rest were still at the interiorisation stage. The identified difficulties might be attributed to 
traditional teaching practices, which strongly rely on the textbook, focusing on limited representations of 
functions (Birgin, 2012). Neglecting other representations incites a narrow conception of functions 
(Thomson, 2015). Extensive explanations and real-life examples might help deepen students’ 
understanding of concepts.  
 
These observations highlight the role teachers’ instructional practices play in students’ knowledge and 
understanding of constructs such as the linear function (Tchoshanov et al., 2017). Watson and Harel 
(2013) assert that teachers themselves should have a complete, structural conception of functions in 
order to be able to drive students’ understanding in the same direction. Teachers need to reinforce their 
pedagogical content knowledge of functions so that they will be better equipped to enhance students’ 
full conception of the linear function. 
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