@article{Cohen_Winkler_2014, title={Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa}, volume={110}, url={https://sajs.co.za/article/view/3731}, DOI={10.1590/sajs.2014/20130194}, abstractNote={<div style="left: 288.189px; top: 209.1px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.837723);">There is increased interest, both in South Africa and globally, in the use of shale gas for electricity and</div> <div style="left: 288.189px; top: 229.381px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.901458);">energy supply. The exploitation of shale gas is, however, not without controversy, because of the reported</div> <div style="left: 288.189px; top: 249.661px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.838649);">environmental impacts associated with its extraction. The focus of this article is on the greenhouse gas</div> <div style="left: 288.189px; top: 269.941px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.890549);">footprint of shale gas, which some literature suggests may be higher than what would have been expected</div> <div style="left: 288.189px; top: 290.221px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.854348);">as a consequence of the contribution of fugitive emissions during extraction, processing and transport.</div> <div style="left: 288.189px; top: 310.501px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.831735);">Based on some studies, it has been suggested that life-cycle emissions may be higher than those from</div> <div style="left: 288.189px; top: 330.781px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.912539);">coal-fired power. Here we review a number of studies and analyse the data to provide a view of the likely</div> <div style="left: 288.189px; top: 351.061px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.848539);">greenhouse gas emissions from producing electricity from shale gas, and compare these emissions to</div> <div style="left: 288.189px; top: 371.341px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.875364);">those of coal-fired power in South Africa. Consideration was given to critical assumptions that determine the</div> <div style="left: 288.189px; top: 391.621px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.898403);">relative performance of the two sources of feedstock for generating electricity – that is the global warming</div> <div style="left: 288.189px; top: 411.901px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.867654);">potential of methane and the extent of fugitive emissions. The present analysis suggests that a 100-year time</div> <div style="left: 288.189px; top: 432.181px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.833605);">horizon is appropriate in analysis related to climate change, over which period the relative contribution is</div> <div style="left: 288.189px; top: 452.462px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.887546);">lower than for shorter periods. The purpose is to limit temperature increase in the long term and the choice</div> <div style="left: 288.189px; top: 472.742px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.904542);">of metric should be appropriate. The analysis indicates that, regardless of the assumptions about fugitive</div> <div style="left: 288.189px; top: 493.021px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.871878);">emissions and the period over which global warming potential is assessed, shale gas has lower greenhouse</div> <div style="left: 288.189px; top: 513.302px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.834821);">gas emissions per MWh of electricity generated than coal. Depending on various factors, electricity from</div> <div style="left: 288.189px; top: 533.582px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.881575);">shale gas would have a specific emissions intensity between 0.3 tCO</div> <div style="left: 683.1179999999999px; top: 544.5996881510416px; font-size: 8.745px; font-family: sans-serif;">2</div> <div style="left: 687.473px; top: 533.582px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.881405);">/MWh and 0.6 tCO</div> <div style="left: 794.122px; top: 544.5996881510416px; font-size: 8.745px; font-family: sans-serif;">2</div> <div style="left: 798.477px; top: 533.582px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.889267);">/MWh, compared</div> <div style="left: 288.189px; top: 553.862px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.87344);">with about 1 tCO</div> <div style="left: 383.4038333333333px; top: 564.8796881510417px; font-size: 8.745px; font-family: sans-serif;">2</div> <div style="left: 387.759px; top: 553.862px; font-size: 15px; font-family: sans-serif; transform: scaleX(0.897245);">/MWh for coal-fired electricity in South Africa.</div>}, number={3/4}, journal={South African Journal of Science}, author={Cohen, Brett and Winkler, Harald}, year={2014}, month={Mar.}, pages={1–5} }