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Evolutionary approaches to carcinogenesis have gained prominence in the literature and 
enhanced our understanding of cancer. However, an appreciation of neoplasia in the context 
of evolutionary transitions, particularly the transition from independent genes to a fully 
integrated genome, is largely absent. In the gene–genome evolutionary transition, mobile 
genetic elements (MGEs) can be studied as the extant exemplars of selfish autonomous lower-
level units that cooperated to form a higher-level, functionally integrated genome. Here, 
we discuss levels of selection in cancer cells. In particular, we examine the tension between 
gene and genome units of selection by examining the expression profiles of MGE domains in 
an array of human cancers. Overall, across diverse cancers, there is an aberrant expression 
of several families of mobile elements, including the most common MGE in the human 
genome, retrotransposon LINE 1. These results indicate an alternative life-history strategy 
for MGEs in the cancers studied. Whether the aberrant expression is the cause or effect of 
tumourigenesis is unknown, although some evidence suggests that dysregulation of MGEs 
can play a role in cancer origin and progression. These data are interpreted in combination 
with phylostratigraphic reports correlating the origin of cancer genes with multicellularity and 
other potential increases in complexity in cancer cell populations. Cooperation and conflict 
between individuals at the gene, genome and cell level provide an evolutionary medicine 
perspective of cancer that enhances our understanding of disease pathogenesis and treatment. 
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Introduction
Over the last few decades, evolutionary and ecological perspectives of carcinogenesis have become 
more prominent in the literature. Cancer cells fulfil the criteria for Darwinian evolution by natural 
selection,1 that is heritable variation in fitness, and investigating neoplasia in this context has 
generated new insights into disease aetiology, pathogenesis and treatment.2,3,4 Such an application is 
exemplified by the analysis of Nagy5 who deduced that if heterogeneity is present between cancerous 
cells then competition for resources (such as vascular nutrients) may occur between tumour cells, 
leading to ‘hypertumours’ with a more aggressive phenotype. By this reasoning, cancerous cells 
may compete with host tissue as well as other cancer cells or groups of cancer cells. Of course, as a 
result of phenotypic variation, slower-growing, less virulent tumours still exist. 

While a number of evolutionary biology and genome-centric concepts have been applied in the 
study of cancer,6,7,8 an understanding of cancer in terms of evolutionary transitions, particularly 
the gene–genome transition, is largely absent. Here we discuss cancer from the perspective 
of evolutionary transitions, highlighting the dynamics of cooperation and conflict that exist 
between different levels of organisation, with particular interest in the gene–genome transition. 
Understanding these dynamics provides an enhanced theoretical framework for cancer biology. 
For cancer research, evolutionary transitions and the closely allied subject of multilevel selection 
theory have particular relevance and potential applications, including modifying treatment 
regimens4,9 to account for evolutionary processes and modelling the formation of malignancy 
in benign tumours.10 Conflict between higher and lower levels of selection, for example the 
unicellular–multicellular levels of selection, is central to understanding the pathogenesis 
and evolution of cancer. This importance is highlighted by the finding that the origin of most 
‘gatekeeper’ genes can be traced to the emergence of multicellularity.11 Gatekeeper genes mitigate 
cooperation and conflict between cells and may include both tumour suppressors and oncogenes. 
Such conflict can also exist at the gene–genome juncture where selection for mobile genetic 
elements at the gene level has been hypothesised to play a role in the aetiology and progression 
of certain cancers.12 

Multilevel selection theory, evolutionary transitions and 
cancer
Multilevel selection theory (MLST), which includes group selection and for which there is now a 
significant body of evidence, describes the living world in terms of hierarchically structured levels 
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where the tenets of selection are applicable to evolutionary 
units at varying levels of complexity.13,14,15 Groups of genes 
form genomes, which form cells, which form multicellular 
organisms, which may form social groups and so on. Natural 
selection may act at any of these levels and the fitness 
conferred by a particular trait can be influenced by selection 
operating at any level. For example, an expressed trait may 
be beneficial at one level but potentially harmful at another. 
A key feature of MLST is that individual units at one level 
can interact to generate properties at a higher level, which 
may simply be aggregates of the properties at the lower 
level or may represent new, emergent properties. Emergent 
properties are not simply aggregates of the property at the 
lower level and are not necessarily reducible to them.16 They 
emerge by interactions within the group and have the ability 
to create new levels of biological organisation and information 
leading to a new type of individual at the higher level. In this 
way, a hierarchical system is generated with higher levels 
of complexity being derived from lower ones. Evolutionary 
transition theory refers to these jumps in complexity and 
attempts to explain why and how these different levels 
emerge.15,17,18 A common thread in the emergence of the 
higher level as a discrete evolutionary unit or individual, is 
that units capable of independent reproduction before the 
transition are only capable of replicating themselves as part of 
the higher-level individual after the transition,17 the premier 
example of which is the transition to multicellularity.19 

For the evolutionary biology of cancer, MLST and the 
transition to multicellularity hold particular relevance. 
Multicellular organisms comprise populations of cells, which 
cooperate to enhance the fitness of the whole. However, as 
with all evolutionary transitions, there is the ever-present 
temptation to cheat so that fitness at the lower level is 
enhanced at the expense of the higher level.20 ‘Cheaters’ 
abort their altruistic behaviour at the higher level in favour 
of selfish behaviour and a fitness benefit at the lower level. 
This process is the basic pathology of cancer, albeit that the 
benefit to cheaters may be transient given that the lower-level 
unit’s survival is usually dependent upon the survival of the 
higher-level unit (although there are at least two exceptions 
to this norm, see Murgia et al.21 and Siddle et al.22). Increased 
fitness at the level of individual cancer cells facilitates clonal 
evolution and disease progression and decreases the fitness 
of the organism4 leading to a transfer of fitness to a lower, 
unicellular level of selection.23,24 In effect, cancer is a failure 
of cooperation at the cellular level. Treatment strategies for 
cancer need to be informed by evolutionary theory in order 
to avoid drug resistance, which forms readily in cancers 
as a consequence of chemotherapeutic agents essentially 
selecting for the fitter, drug-resistant cells. Targeting higher-
level units (e.g. populations of cells or genomes) rather than 
lower-level units can be very effective at reducing the rate 
of drug-resistant mutations.3,4 For example, the use of anti-
angiogenic compounds targets the ‘group’ as opposed to 
individual cells and results in a major therapeutic benefit. 
Anti-angiogenic compounds deprive a growing tumour of 

the rich blood supply needed for rapid growth, which leads 
to death at a population level where resistance is far less 
likely to emerge (see Pepper et al.3, Crespi and Summers4 and 
Durand and Coetzer25). 
 
It has long been argued that cancer and multicellularity 
are evolutionarily connected.26 Additional evidence for 
this connection came to light using a method known as 
phylostratigraphy, which correlates the origin of genes with 
evolutionary transitions.27 A phylostratigraphic analysis 
of the conserved domains in cancer genes traced their 
origin to two major evolutionary events: the emergence 
of a stable genome and multicellularity.11 The so-called 
‘gatekeeper’ cancer genes are directly connected to the origin 
of multicellularity in metazoa and the correlation between 
the emergence of these genes and metazoan multicellularity 
suggests they played a key role in this transition. Mutations in 
the same genes disrupt cell signalling and growth functions 
during carcinogenesis.

The phylostratigraphic analyses also found that genes 
implicated in genome stability, referred to as ‘caretaker’ 
genes, emerged during the origin of the first cell.11 In terms 
of levels of information organisation, structures such as the 
cell are not necessarily levels of complexity.14 Such is the 
case if one subscribes to the view that levels of complexity 
are about levels of information organisation,17 although this 
is not universally shared (for example see Griesemer14 for a 
discussion on replicators versus reproducers). So in this case 
the level of complexity in question is the genome. In keeping 
with the genome-centric view of evolution,7 this level is the 
functional hereditary level at which biological information 
and complexity reside. Therefore what is significant here is 
that the emergence of caretaker genes involved in genome 
maintenance and stability coincide with the origin of the 
most ancient, functionally integrated genomes. 

In addition to the unicellular–multicellular evolutionary 
transition we consider that other evolutionary transitions, 
such as the gene–genome evolutionary transition, may be 
associated with cancer. For example, the caretaker genes, 
which originate from the early origin of the genome, are 
less effective in a cancer cell, which results in conflict, or at 
least increased tension, between gene and genome levels. 
The genome is the playground for selfish, cooperative 
and altruistic genes, where tensions between two levels of 
selection (gene and genome) can arise.8,28 These observations 
are relevant for our understanding of the gene–genome 
evolutionary transition.

Mobile genetic elements and cancer
Mobile genetic elements (MGEs) have played a major role 
in genome evolution by generating new regulatory sites and 
providing coding material for novel functions. MGEs usually 
become ‘domesticated’ by ceasing to exist as individuals with 
a unique life-history strategy and are incorporated into the 
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higher-level unit of selection – the genome.29 Intragenomic 
conflict can arise if MGEs are not domesticated.30 MGEs are 
functionally analogous to the presumed ancient replicators 
that cooperated to form primitive protein coding genomes 
and are helpful for understanding the gene–genome 
evolutionary transition.28 A causal link between MGEs and 
carcinogenesis has also been identified as MGE activity 
may cause genome damage,12,31,32,33 dysregulation of genome 
replication or cell cycling, disruption of cooperative cellular 
behaviour and eventually neoplasia.34,35,36,37,38 In a recent 
whole-genome analysis of RNA transcripts using digital 
gene expression analysis, an increase in satellite repeat 
marker expression was identified in pancreatic (human and 
mouse), prostate, lung, kidney and ovarian tumours.39,40 Of 
the satellite regions expressed in tumours, MGEs, including 
LINE-1 (the most abundant MGE in the human genome) 
were highly enriched. The authors of these findings suggest 
that the aberrant expression of selfish genes was because of 
epigenetic modification, but they do not state whether the 
change in expression is causal in the development of cancers 
or is simply a by-product of other disruptive processes. This 
phenomenon was found in at least five tumours; however, 
whether this can be generalised to all cancers is unknown.39 
These empirical data of altered MGE activity in various 
cancers provide an opportunity to analyse the life-history 
strategy of individual genes in the context of the gene and 
genome levels of selection in cancer cells. The current review 
does not attempt to demonstrate that MGEs initiate cancers, 
although there are some instances where this may be the case, 
for example, Lamprecht et al.35 found that aberrant activation 
of the endogenous long terminal repeat (LTR) promoter of 
retrotransposon THE1B causes overexpression of cell cycling 
genes and malignant transformation. Here we merely ask 
whether the life-history strategy of MGEs is altered in cancer 
and if this change in life-history strategy represents a shift 
in emphasis from the genome to the gene. Interpreting 
Lamprecht et al.’s35 findings from the perspective of the 
gene–genome evolutionary dynamic, one can conclude that 
unregulated activity of a selfish lower-level unit (THE1B) 
disrupts homeostasis at the higher level (genome) and 
induces progression to carcinogenesis. In the ensuing 
cancer cell population there was further disruption of gene-
genome homeostasis and, just as in the aberrant unicellular–
multicellular dynamic, there was a relative transfer of fitness 
to the level of the gene.

As described above, the essence of cancer is that there is a 
disconnection between levels of complexity, the unicellular 
and multicellular levels, and/or the gene–genome levels. 
In malignancy, the increasing conflict and decreasing 
cooperation revolve around these two major evolutionary 
transitions. The re-organisation of fitness to the individual 
cell reflects conflict at the unicellular–multicellular bridge as 
reflected by the discovery that gatekeeper cancer genes arose 
in tandem with multicellularity.11 As in all biological systems 
where there is phenotypic variability, such conflict may 
not be a total breakdown of the unicellular–multicellular 
transition but rather a heightening of tension between the 

two levels. Selection operating at the level of the cell in 
cancer represents a shift from a higher-level unit to a lower-
level unit; however, this shift is not a complete disconnect 
given that the fitness of the higher level is still affected by 
the fitness of the cancerous cell and increased cellular fitness 
may lead to the demise of the higher-level unit. Therefore, in 
cancer, even though conflict between the levels of selection 
is increased, viability at one level of selection can influence 
viability at another level. 

Is mobile genetic element 
behaviour disrupted in all cancers?
To investigate whether the disruption of MGE behaviour 
is a feature of most cancer cell types, we analysed the 
expression profiles of MGE terms (N=26, supporting 
information S1) indentified in the Affymetrix annotation 
portal (Netaffx) across diverse cancer cell populations and 
compared these with non-cancer cells for the same tissue 
type using the OncomineTM online (http://www.oncomine.
org/) repository of cancer microarray expression.41 The 
OncomineTM repository consists of published microarray 
data sets of a diverse assortment of cancers. For this 
analysis only tumour versus healthy tissue comparisons 
were used. These comparisons included various matched 
controls, that is, non-cancer cells from the same tissue in 
the same individual and  non-cancer cells from the same 
tissue but different individuals (for example in the case of 
leukaemia where healthy blood or bone marrow cannot be 
obtained). MGE terms included transposons, non-LTR and 
LTR retrotransposons (e.g. LINE 1), MGE regulatory genes 
(e.g. SUPT5H), as well as partially domesticated genes with 
MGE domains such as SETMAR and POGK, which may be 
selfish or cooperative in their behaviour.42 The OncomineTM 
database was queried using the derived MGE gene list and 
examined for expression differences. Data sets were filtered 
with the default OncomineTM criteria, namely p≤0.0004, fold 
change ≥ 2 and the 10th percentile. 

Data from the OncomineTM database revealed altered MGE 
expression in a diverse array of malignant tissues (Table 1 
and Figure 1). Particularly prevalent were germ-cell tumours 
(p≤0.0004) where some MGEs had either lower or higher 
expression. For example, the retrotransposon L1TDT1 
was differentially expressed in two studies of germ-cell 
and embryonal cancers.43,44 Differential expression of MGE 
domains (such as SETMAR and POGK) was common in 
epithelial tumours, particularly in bladder and skin tumours. 
These observations support the hypothesis that there is 
differential expression of various MGEs in a diverse range 
of cancer cell types. There is a change in the reproduction 
rate which implies a change in life-history strategy in the 
cancer cell compared with the non-cancer cell. The altered 
MGE life-history strategy reflects a difference in the gene 
and genome levels of selection in cancer cells compared 
with non-cancer cells. Such changes in life-history strategy 
typically, but not always, reflect an increase in competition 
between lower-level units or increased tension between 
lower and higher levels of complexity.24,30 Interestingly, 
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some patterns emerge with regard to MGE expression and 
tumour types. For example, germ-line tumours such as the 
testicular cancers are represented more frequently. Whether 
these observations have any evolutionary significance is 
not clear and would require more detailed investigations. It 
was noted that the expression of partially domesticated or 
host-MGE hybrids like SETMAR (Table 1) and selfish, non-
domesticated MGEs like the LINE 1 domain L1TD1 were both 
affected. This observation suggests that the transformation 
to malignancy impacted the behaviour of MGE domains 
irrespective of their level of domestication. The data reported 
here, however, cannot distinguish between gene or genome 
level activity of the hybrid or partially domesticated MGE 
domains like SETMAR and POGK (for a discussion of 
partially domesticated MGEs and evolutionary transitions 
see Durand and Michod28 and Sinzelle et al.42). Some MGE 
domains such as GIN1, RGAG1 and RGAG4 demonstrated 
lower expression in some cancers when compared with 
controls, indicating that their change in life-history strategy 
may lead to up or down regulation. Overall, these data 
revealed that aberrant expression of MGE domains was a 
feature of the majority of cancers examined and that both 
gene–genome and unicellular–multicellular junctures are 
impacted in the cancer cell (Figure 2). 

Not all cancers, however, reflect the tension between genes 
and genomes. Some cancers, such as chronic myeloid 

leukaemia, can be defined by specific gene mutations. In 
chronic myeloid leukaemia, chromosomal translocation 
of chromosomes 9 and 22 gives rise to a fused gene 
product (BCR-ABL1) which provides mutated cells with a 
proliferative advantage. In this case, the mutant chimera will 
increase its frequency within a population of haematopoietic 
cells over wild-type bcr and abl1. However, this mutation 
provides a benefit (albeit a short-term one) to its nearest 

TABLE 1: Differentially expressed mobile genetic elements in cancers.
Mobile genetic element Tissue or cancer type Regulation in cancer
SETMAR

Renal Down
Skin/melanoma Down
Bladder Down

L1TD1
Testis; intratubular germ 
cell and embryonal 
carcinoma

Up

Testis; yolk sac tumour, 
embryonal carcinoma and 
mixed germ cell tumour

Up

Colon Up
Breast Down
Testis, teratoma Down

GIN1
T-cell leukaemia/
lymphoma

Down

Testis; yolk sac tumour, 
embryonal carcinoma, 
teratoma, seminoma and 
mixed germ cell tumour

Down

RGAG1
Testis, embryonal 
carcinoma, yolk sac and 
seminoma

Down

TERT
T and B-cell leukaemia Up

POGK
Cervical Up
Melanoma Up
Liver Up

  Bladder cancer Up
First column includes gene names. Second column indicates the tissue or cancer type. Third 
column describes the abnormal qualitative mobile genetic element expression (up or down; 
p ≤ 0.0004; fold change ≥ 2; only the top 10% of differentially expressed genes are included). 
Data obtained from OncomineTM. 
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FIGURE 1: Aberrant mobile genetic element (MGE) expression in cancerous 
tissue. Images from OncomineTM of MGE expression in different tumours 
displaying normalised expression by log median-centred ratio for three MGE 
domains: (a) L1TD1 expression in germline carcinomas, (b) TERT (telomerase 
reverse transcriptase) expression in leukaemia and (c) POGK expression in 
bladder cancer.

b

1. normal testicular cells                                      4. testicular seminoma
2. embryonal carcinoma                                      5. testicular teratoma
3. testicular intratubular germ cell neoplasia         6. testicular yolk sac tumour

1. normal bone marrow cells
2. acute leukaemic bone marrow cells

1. normal bladder cells 
2. cancerous tissue
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higher level, that is, selection of the mutant BCR-ABL1 gene 
will select for genomes (cells) that carry this mutant. In 
this situation, there is initially no conflict between the gene 
and the genome. For selection to shift to the gene level, the 
gene must become an individual in its own right, just as a 
transformed cell develops a life history independently of the 
organism. Additionally, this newly acquired individuality 
is frequently harmful to the higher level. Changes to gene-
level life-history strategies may indeed occur in some cancers 
(for example see Deming et al.45). Some MGEs are truly 
‘selfish’ elements. Their reproduction within the genome 
is deleterious to the rest of the host genome34 just like any 
other host–parasite relationship. In the case of MGE fitness, 
overexpression increases reproduction and underexpression 
increases viability.28 But why and how does the cancer cell 
mirror these ancient evolutionary transitions? 

Evolutionary transitions and conflict
For the transition to a higher level of biological complexity 
to occur, lower-level conflicts need to be controlled such that 
selection at the higher level is maintained. This argument 
is now well established in evolutionary transition theory,17 
particularly in the context of multicellularity origins20 and is 
equally applicable to the gene–genome transition.28 There is 
always the temptation for lower-level units to cheat or not 
cooperate, thereby disrupting the emergence or maintenance 
of a higher-level individual. Lower-level units might, for 
example, replicate faster and increase their representation in 
the next generation at a cost to the higher level. A number 
of the features of evolutionary transitions mean that 
disintegration of the higher level into its lower-level units 
can be avoided. The division of labour, for example, means 
that organisation at the higher level is functionally integrated 
and lower-level units are no longer capable of independent 
replication. This characteristic of contingent irreversibility17 
ensures cooperation between lower-level units, which are not 
autonomous and have no independent future. The temptation 

to cheat and develop an independent existence, however, 
always exists and mechanisms for controlling lower-level 
conflicts and maintaining higher-level functionality have 
emerged to counteract this tendency.

Controlling mechanisms exist that maintain both genome 
integrity and multicellularity. With respect to genome 
integrity, genoprotective mechanisms are essential for 
regulating MGE behaviour and genome maintenance30 
and are ubiquitous in nature. A disruption of these gene-
level policing mechanisms means that MGEs are no longer 
controlled and are free to proliferate or indulge in selfish 
behaviour. Cancer genomes undergo numerous and large-
scale changes and dysfunctional genoprotective mechanisms 
are almost certain to occur during cancer progression. 
It is no surprise, therefore, to find that a disruption of the 
gene–genome transition occurs in cancer cells. Similarly, 
in multicellular organisms the immune system polices the 
activity and reproduction of individual cells. However, 
mutant genomes that allow cells to escape immune 
surveillance are free to indulge in selfish reproduction and 
regress to their lower-level unicellular-like existence. It is 
interesting that while cancers incur a fitness cost to the higher 
level multicellular organism, some tumours have regressed 
to a truly unicellular existence. These tumours include the 
peculiar cases of canine venereal transmissible carcinoma21 
and a facial tumour in Tasmanian devils.22,46 In these cases, 
the cancer cells are genetically unrelated to their hosts, but are 
transmitted between individuals through physical contact. In 
summary, it is the failure of mechanisms that control lower-
level conflict that allows the cancer cell to mirror the ancient 
evolutionary transitions discussed here.

Other levels of complexity in 
malignant cells
The above data and arguments indicate that two major 
evolutionary transitions are disrupted in cancer cells. Is 
it reasonable to suspect that other levels of complexity are 
found in malignancy? A superficial consideration of events 
known to take place in tumours, suggests the answer is yes. 
Although the criteria for what may constitute a major or 
minor evolutionary transition can be debated,14 other conflicts 
between evolutionary units occur in cancer cell populations. 
For example, competition and conflict between chromosomes 
for increased representation in the next generation is known 
to occur.47,48 Whether the variation in chromosome number 
(aneuploidy) is a cause or consequence of cancer is again a 
vexed question, but as with MGEs in cancer, the point here 
is that conflict arises and lower-level units invest more in 
their own fitness. Similarly, intergenomic conflict, such as 
that which may occur between mitochondrial and nuclear 
genomes,47,49 may cause variations in mitochondrial gene 
or genome number in cancer cells. These intragenomic and 
intergenomic conflicts suggest that other tensions between 
levels of complexity may be playing out.

FIGURE 2: The cancer cell and evolutionary transitions. Two evolutionary 
transitions, the unicellular–multicellular and gene–genome junctures, are 
depicted. In each case, fitness at the lower level – the individual mobile genetic 
element (MGE) or single cell – disrupts cooperation and integration of the 
higher-level unit – the genome or multicellular organism.

Lower-level unit 

Gene/MGE

Unicellular

Cancer
cell

Higher-level unit

Genome

Multicellular



Review Article

S Afr J Sci  2012; 108(9/10)  http://www.sajs.co.za

Page 6 of 7

Concluding remarks
According to MLST, multiple levels of complexity may act as 
levels of selection. For these increases in complexity to have 
formed, cooperation was required. Malignancy represents 
the failure of cooperation and the subsequent increases in 
tension between lower and higher levels of complexity. This 
paper highlights cooperation and conflict in cancer occurring 
between two evolutionary transitions: the unicellular–
multicellular and the gene–genome.

Investigating carcinogenesis from an evolutionary perspective 
provides conceptual advances, enhances our understanding 
of the pathological process and may lead to new treatment 
strategies. It is conceivable that therapeutic interventions 
that account for the evolutionary processes inherent in cancer 
cells are more likely to succeed. For example, therapeutic 
interventions that intentionally (or as a side effect) promote 
the disintegration of the evolutionary transitions discussed 
above may actually exacerbate the disease, whereas others 
which promote cooperation diminish it.
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