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Molecular databases have enabled scientists across the globe to collaborate and contribute to the growth of 
the databases. The current form of the databases involves researcher input which is acted upon by algorithms 
developed by bioinformaticians leading to outputs for researchers. Experimental data analysis using the molecular 
databases normally results in a reduction in cost and time for in vitro experiments preceded by in silico stages. 
Molecular biology technologies are applied in multiple disciplines, generating enormous amounts of data every 
day, which, when deposited, requires professional staff to annotate, verify submissions and generally maintain 
the database. The rapid rise of artificial intelligence (AI) can be used to enhance molecular databases through 
incorporation of deep learning and deep reasoning to enable the molecular databases to partially self-maintain, 
bringing novel applications and the potential for an improved user-friendly interface for researchers who are not 
trained in bioinformatics to generate data that require bioinformatics-related analysis.

Bioinformatics has been around since the 1960s, whilst online molecular databases that handle data generated 
by disciplines in the life sciences have existed since the 1990s1, with researchers contributing by submitting data 
generated through experiments conducted in vitro and in vivo or by utilising the molecular databases for in silico 
analysis. The backbone of this analysis is bioinformatics presented in various algorithms tailor-made for different 
molecular data, such as DNA (genomics), RNA (transcriptomics) and protein (proteomics), to produce particular 
outcomes. This analysis relies on the researcher interrogating the database through the algorithms. 

A plethora of databases such as GenBank has been published in the Nucleic Acids Research Database issues 
for the past 26 years, highlighting a range of different molecular data and a synchronous range of bioinformatics 
capabilities within the databases.2-4 The tools to use on data contained in the molecular databases is determined 
by researchers. Often a researcher may opt to use the bioinformatics tools they are well acquainted with and 
opt not to use other tools which might require arduous training. However, the data submitted to providers of 
molecular databases require skilled professionals to update and secure systems and verify the accuracy of the data 
submitted1 and funds are required for such staff. 

The growing availability of AI brings the possibility of self-learning, self-reasoning and self-improving molecular 
databases that can be considered to be ‘next-generation enhanced molecular databases’ which can assist in lowering 
the cost of maintenance, ultimately reducing databases becoming defunct and introducing novel applications and 
a new in-depth analysis of molecular data. These next-generation databases can enable bioinformatics to become 
more user-friendly to non-bioinformatics trained researchers who, owing to the multi- and interdisciplinary nature 
of molecular life sciences data, sometimes face a daunting task in analysing data. 

This next generation may take the form of AI led or incorporated databases. These can have various forms of deep 
learning, deep reasoning and reading algorithms that enable the databases to learn experientially. These databases 
will not be static but will be capable of increasing the database routine tasks that can be accomplished through 
experiential learning so that activities such as curation, annotation and archiving can be partly accomplished, with 
human verification required, together with the introduction of new potential applications. 

Molecular databases enhanced with AI may be useful for a new level of deep analysis that involves the AI selecting 
the parameters to be used through experiential learning in areas that include three-dimensional modelling5, binding 
predictions and domain calling6, epigenome, especially differential DNA methylation patterns7, deep analysis of 
multi-omic data8,9, sequence-based taxonomy3, precision medicine and drug discovery10,11. The experiential learning 
capability suggests that the database can, for example, interrogate a submitted set of molecular data and determine 
the nature of the data and carry out basic analysis to assign identity, annotation and generation of output from the 
AI selected parameters, like a phylogenetic tree or identified potential antimicrobial agents. A user interface can 
then pop up with suggestions for further data analysis, for example, if the AI has identified a potential therapeutic 
agent against existing or emerging pathogens, then prediction AI simulations12 are selected and run using deep 
learning algorithms that would run in silico trained parameter algorithms for predicting pathogen ‘growth inhibition’, 
or ‘neutralise pathogen receptor access’, or ‘prevent multiplication’. This will greatly assist those researchers 
who are not bioinformatics trained to generate molecular life sciences data that require bioinformatics analysis. 
These next-generation databases can potentially provide improved user-friendly interaction with bioinformatics by 
providing single-click buttons for running particular bioinformatics tools whilst the parameters are selected by the 
AI after analysis of the submitted data set.

The current challenge of big data analysis may be ameliorated by development of AI that performs a comparative 
analysis of recently submitted big data sets against existing similar data sets and possibly suggests areas that need 
modification in terms of analysis for bioinformaticians to develop.
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