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Fusarium head blight (FHB), also known as head scab, is a devastating fungal disease that affects 
small grain cereal crops such as wheat (Triticum aestivum L.). The predominant causal agent, Fusarium 
graminearum Schwabe (teleomorph: Gibberella zeae (Schwein.) Petch), is ranked the fourth most 
important fungal plant pathogen worldwide. Apart from yield and quality losses, mycotoxin production can 
occur from FHB infection, resulting in harmful effects on human and animal health. Some level of disease 
control may be achieved by using certain fungicides and agronomic practices plus host resistance. In 
South Africa, there are currently no registered fungicides or bio-fungicides, no resistant wheat cultivars 
and only limited control is achieved by cultural practices. Because effective disease reduction cannot 
be achieved by using a single strategy, the integration of multiple management strategies can enhance 
disease control. We review possible strategies for reducing the risk for FHB infections that are relevant to 
the context of South Africa and other wheat growing areas in Africa.

Significance:
• The importance of the effect of FHB on wheat cannot be overemphasised. This review highlights and 

describes the various control options and their efficacies. It also describes the current state of research 
in an effort to control FHB and its associated mycotoxins.

• Wheat is one of the most produced crops worldwide and in South Africa, hence this review could 
promote and intensify research towards the development of more effective management strategies for 
FHB of wheat. 

Introduction
Fusarium head blight (FHB), also known as head scab, is a devastating fungal disease that affects small grain 
cereal crops such as wheat (Triticum aestivum L.).1-3 It is regarded as a major limiting factor in wheat and barley 
(Hordeum vulgare L.) production across the world.4,5 The disease is caused by the FHB species complex which 
consists of more than 17 Fusarium species.6-8 However, in South Africa, FHB is predominantly caused by Fusarium 
graminearum Schwabe (teleomorph: Gibberella zeae (Schwein.) Petch).7 The FHB pathogen is capable of causing 
head blight or scab on wheat, barley, rice (Oryza sativa L.) and oats (Avena sativa L.), and Gibberella stalk and 
ear rot disease on maize (Zea mays L.). The pathogen may infect other host genera without causing disease 
symptoms. These genera include Agrostis, Bromus, Calamagrostis, Cortaderia, Cucumis, Echinochloa, Glycine, 
Lolium, Lycopersicon, Medicago, Phleum, Poa, Secale, Setaria, Sorghum, Spartina and Trifolium. Apart from 
F. graminearum, the Fusarium species that occur in South Africa are: F. acacia-mearnsii O’Donnell, T. Aoki, Kistler & 
Geiser, F. boothii O’Donnell, T. Aoki, Kistler & Geiser, F. brasilicum T. Aoki, Kistler, Geiser & O’Donnell, F. cortaderiae 
O’Donnell, T. Aoki, Kistler & Geiser and F. meridionale T. Aoki, Kistler, Geiser & O’Donnell.9

F. graminearum is distributed worldwide, and is especially prominent in temperate regions where its hosts are 
mostly cultivated.8 The pathogen infects spikelets at anthesis and thereafter colonises the entire head systemically, 
thus producing extensive blight symptoms.10,11 This happens when the presence of favourable environmental 
conditions coincide with high disease pressure and susceptible host tissue.8,11 Disease progress is accompanied 
by the production of trichothecene mycotoxins [primarily deoxynivalenol (DON), nivalenol (NIV)] and zearalenone 
(ZEA), which not only pose a threat to the health of humans and other animals, but also reduce grain quality.12,13 

Challenges involved in the management of FHB are because the favourable conditions for disease development 
often coincide with the conditions that trigger anthesis. Moreover, the fast progress and epidemic development 
of FHB limits the effectiveness of certain control methods.14 Nevertheless, some management strategies have 
been reported to provide certain levels of FHB and DON reduction on infected hosts.15-21 There are no registered 
fungicides1 and no completely resistant wheat cultivars1,22 in South Africa or elsewhere, whilst only limited control 
is achieved by cultural control methods.1,9 Therefore, the development of more effective FHB management 
strategies is essential. 

Wheat production 
Wheat is a cereal grain that is native to the Levant region of the Near East and Ethiopian highlands.23 It is cultivated 
worldwide and is one of the three most produced cereal crops in the world.23,24 Wheat is a good source of 
carbohydrates (78.10%), proteins (14.70%), minerals (2.10%), fat (2.10%), B-group vitamins and dietary fibre.25 
It can be consumed as an ingredient in foods such as bread, pasta, crackers, cakes, noodles and couscous.23,25 
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Epidemiology of F. graminearum
Wheat plants are mostly susceptible during anthesis, because during 
this stage the wheat anthers split to discharge pollen (a process known 
as anther extrusion), which serves as an opening and provides entry for 
the pathogen.26,27 The favourable conditions for infection are prolonged 
periods (48–72 hours) of high moisture or relative humidity (<90%), 
moderately warm temperature (15–30 °C), frequent rainfall and the 
occurrence of air currents.2,28,29 These conditions usually occur in 
spring. Trail et al.30 reported that an increase in relative humidity results 
in a build-up of turgor pressure within the ascus and consequently the 
forcible discharge of ascospores. Rainfall has been reported to cause 
the rupturing of the ascus wall which consequently encourages the 
dispersal of ascospores.14,30 

The occurrence of these conditions and the abundance of inoculum 
before, during and after anthesis of susceptible cultivars, therefore 
results in yield and quality losses as well as the development of severe 
epidemics.2,26,31 The host remains susceptible throughout the flowering 
stage; however, late infections have been associated with reduced 
disease severity and high DON accumulation.32 Due to differences in 
climatic requirements, and genetic and environmental adaptations 
within the FHB species complex, these species are capable of causing 
disease in a variety of conditions, resulting in the worldwide distribution 
of FHB (Figure 1).2,8 For example, F. culmorum (Fc) (W.G. Smith) and 
F. avenaceum (Fr.) Sacc are more predominant in cooler regions
(such as Western Europe) whereas F. graminearum predominates in
warmer and more humid regions of the world (such as North America
and Australia).33

Source: Reproduced from Trail11 with permission.

Figure 2:  The life cycle of Fusarium graminearum, the causal pathogen of Fusarium head blight disease of wheat.

Source: Reproduced from CABI80 with permission.

Figure 1:  The global distribution of Fusarium graminearum (orange dots) 
as per documented outbreaks.

Disease cycle and symptom development
During overwintering or over-summering, the pathogen survives as a 
precursor to perithecia from which ascospores (primary inoculum) are 
forcibly discharged under favourable environmental conditions (warm, 
wet and moist) (Figure 2).11,30 The ascospores are dispersed by wind 
or rain splashes, land on susceptible plant tissue and colonise the plant 
surfaces (Figure 2).8,11,33 After entry, Fusarium runner hyphae grow 
intercellularly and asymptomatically in the inner tissue of the spikelets 
(palea, lemma and glumes).11,33 
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Thereafter, the hyphae grow intracellularly, which leads to plant cell 
death.11 This is accompanied by the production of mycotoxins such 
as DON which has virulent properties that lead to tissue necrosis.34 
Mycotoxins are capable of disabling the plant defence mechanisms 
and defending the fungus from other microorganisms, thus 
promoting infection.35 A study by Boenisch and Schäfer36 revealed 
that F. graminearum forms lobate appressoria and infection cushions 
during FHB pathogen infection in wheat tissue and trichothecene 
biosynthesis occurs in these structures. The authors further reported 
that trichothecene biosynthesis is not necessary for the formation of 
these structures nor the initial infection of wheat tissue.36

Initial disease symptoms include water-soaked lesions on spikelets 
which later appear whitened or bleached.11,37 Thereafter, white or pinkish 
mycelia (Figure 3a) and pink or orange spore masses (Figure 3b) appear 
on the margin of the glumes of infected spikelets.37,38 Small purple-like 
or black spherical structures (perithecia) are produced (Figure 3c)37,38 
which then sporulate and further infect healthy host tissue2. Infected 
kernels may appear shrivelled, shrunken and discoloured with a light-
brown or pinkish-white appearance.2 These Fusarium-damaged kernels 
(FDKs) are often associated with high mycotoxin concentrations, 
reduced seedling emergence and reduced seedling vigour, making them 
unusable as food, feed or seed.38,39

Economic and social importance of FHB
According to Dean et al.40, FHB is currently ranked the fourth most 
scientifically and economically important plant fungal disease globally. 
Economic impacts (direct or indirect) caused by FHB are due to yield 
loss (production of FDKs), mycotoxin contamination, reduced animal 
productivity and human health costs.41,42 In the USA, yield and quality 
losses due to FHB disease on wheat and barley in the 1990s amounted 
to more than USD3 billion (which equates to ZAR10.5 billion based 
on the average annual exchange rate in the aforementioned years).43 
Losses in Canada have ranged from USD50 million (ZAR183.5 million) 
to USD300 million (ZAR1.1 billion) annually since the early 1990s.44 
According to Scott et al.45, a disease incidence of more than 70% was 
reported near Winterton in KwaZulu-Natal, South Africa.

FHB-infected grain can result in allergic reactions as well as breathing 
problems for handlers.46 In non-ruminants (e.g. pigs), feed refusal 
and reduced feed consumption have been reported as side effects of 
DON-contaminated feed ingestion.38,44,46 Ruminants (e.g. cattle) are 
reported to have a higher tolerance to DON concentrations than non-
ruminants.35,38 Moreover, adult beef cattle have a higher tolerance to 
DON concentrations than calves and pregnant cows.44 DON has been 

reported to result in abortions, stillbirths and weak piglets, thus affecting 
pig markets.41 

In addition to crop losses and mycotoxin production, the disease also 
leads to the selective loss of albumin and gluten proteins on contaminated 
grains.47 This results in yield and quality (economic) losses due to a 
reduction in the market grade of grains intended for feed, malting, baking, 
milling, trade (exports), biofuel and brewing industries.8,41,44,48

Chemical and physical methods for the detoxification of mycotoxin-
contaminated grains have been previously studied.44 In a review by Jard 
et al.49, various techniques of mycotoxin decontamination are discussed 
which can be achieved by either adsorption or transformation. Current 
regulations, however, prohibit both the decontamination of grains with 
mycotoxin levels above the acceptable limits and the chemical treatment 
of products intended for human consumption.49 Moreover, obtaining an 
economical or commercially feasible method for the detoxification of 
contaminated grains has been unsuccessful thus far.44

Management strategies
Agronomic practices
Certain agronomic practices have been reported to contribute to 
the reduction of FHB incidence and severity.2,50,51 The most effective 
cultural control strategies that result in reduced pathogen inoculum 
and thus reduced FHB incidence and severity in succeeding seasons 
include: crop rotation with non-host crops; residue management; and 
tillage practices.9,51,52 

Other practices that are of moderate or low efficacy in the control of FHB 
include: disease forecasting; early planting; the use of early maturing 
cultivars; the use of cultivars with agronomic traits that are unfavourable 
for FHB infection; weed control; irrigation management; and optimising 
crop nutrition.9,51,53 Post-harvest storage practices such as increasing 
the combine’s fan speed, reducing moisture and temperature in the silos, 
and sorting and discarding broken and damaged kernels have also been 
reported to be effective in reducing FHB and DON contamination in 
grain batches.50,51 Because damaged kernels are lightweight and thus 
easily blown away, they can be separated by increasing the combine’s 
fan speed.50,51

Environmental conditions can affect the efficacy of agronomic 
practices in the control of FHB. For example, the occurrence of rainy 
weather can encourage the dispersal of ascospores, thus resulting in 
FHB infections.8,30 Nevertheless, agronomic practices can lower the 
amount of inoculum present in the field and thus lower FHB infections 
on host plants.

a b c

Infected 
spikelets Orange 

spores
Black 
perithecia

Photos: S.P.N. Shude

Figure 3: FHB-infected wheat heads showing bleached spikelets with white, pinkish fungal mycelia (a), orange spores (b) and black perithecia (c).
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Chemical control 
In most parts of the world, several fungicides have been tested for their 
efficacy in reducing FHB on wheat.1,53 According to Haidukowski et al.54, 
the use of certain fungicides resulted in reductions of 77% and 89% 
in disease severity and mycotoxin contamination of infected grains, 
respectively. Fungicides in the demethylation inhibitor (DMI) class are 
widely used to control FHB and DON contamination on grain crops.53,55 
In a study by Paul et al.56, the application of DMI fungicides on wheat 
anthers at Feekes 10.5.1 growth stage was the most effective treatment 
in reducing FHB index and DON. 

According to Salgado et al.50 and Palazzini et al.16, past research 
has reported on the successful reduction of FHB severity and DON 
concentrations and consequently reduced yield and quality losses 
from the timely application of triazole-based fungicides. Cromey et 
al.17 observed a reduction up to 90% in FHB incidence and a 14% yield 
increase through the application of tebuconazole on FHB-infected wheat 
plants. Moreover, meta-analyses of fungicide trials conducted in the 
USA showed that metconazole, prothioconazole + tebuconazole, and 
prothioconazole were the best three fungicide treatments resulting in the 
highest increase in yield and test weight.57,58 

Some fungicides used to control FHB have been reported to indirectly 
increase DON concentrations in grains.56,59 These include fungicides 
of the quinone inhibitor (QoI) class.56 In a study by Paul et al.56, the 
application of QoI fungicides on wheat anthers at either Feekes 9 or Feekes 
10.5 growth stages increased mean DON concentrations compared 
to the non-treated checks. Previous research reports that the use of 
azoxystrobin resulted in the reduction of FHB caused by Microdochium 
nivale var. nivale (Fries) Samuels and Hallet, and M. majus (Wollenw.) 
Glynn & S.G. Edwards, no reduction of F. graminearum and F. culmorum 
and high DON concentrations on harvested grains.17,60 This could be 
attributable to the non-toxicity of M. nivale as mycotoxin production 
has been associated with increased virulence in Fusarium species.51,61 
Moreover, azoxystrobin could have slowed down and not prevented the 
disease17 and also attacked other competitive microorganisms on wheat 
ears, thus encouraging the development of FHB51,35.

The timing of fungicide application is crucial as fungicides are most 
effective when applied within a week of early anthesis.1,62 Achieving 
this timing can be difficult due to the uneven flowering of tillers across 
cultivation fields as well as rainy weather.62 Moreover, the erratic nature 
of FHB epidemics can reduce fungicide efficacy.35 Regardless of the 
successful reduction of FHB and DON provided by certain fungicides, 
no fungicide has been reported to completely eradicate the disease 
on infected crops and even the best fungicides are not fully effective.1 
Therefore, fungicides are best used in combination with other control 
strategies (such as cultural methods).1

Biological control
Several bacterial, fungal and yeast strains have been reported to 
provide effective reduction of FHB severity and/or DON concentrations 
in infected grains.15,63,64 These were reviewed by Legrand et al.65 and 
presented in appropriate tables. Biological control agents (BCAs) can 
be applied as residue, seed, spikelets and/or post-harvest treatments.65 
According to Schmale and Bergstrom35, BCAs have been reported to be 
potentiated with the ability to provide extended protection of spikes even 
after flowering, when most control strategies (e.g. fungicides) cannot 
be applied. 

Mycotoxin-binding and bio-transforming microorganisms can also 
be used to reduce mycotoxin contamination in grains by binding 
the mycotoxins or by converting them to less toxic metabolites, 
respectively.65 Unfortunately, the development of effective and safe 
detoxifying agents for use in grains intended for human consumption 
has been unsuccessful thus far.49,65

Bacteria as antagonists
Strains of Bacillus spp.18,42, Pseudomonas spp.64, Streptomyces spp.15 

and Lactobacillus plantarum66 have been tested against F. graminearum. 
These bacteria were isolated from various environments, applied 

on anthers and/or residues of host plants, and employed various 
mechanisms of biological control (such as antibiosis, competition and 
mycoparasitism) against F, graminearum.65 

In a study by Pan et al.67, Bacillus megaterium reduced FHB incidence 
and severity, and DON production under field conditions by 93%, 54% 
and 89.3%, respectively. Furthermore, a study by Palazzini et al.15 
reported that Streptomyces sp. RC 87B reduced F. graminearum 
inoculum by 85% and 100% after 45 days and 90 days, respectively, 
when applied on wheat stubble. In a later study, Palazzini et al.68 reported 
that B. velezensis RC 218 and Streptomyces albidoflavus RC 87B 
effectively reduced FHB incidence (up to 30%), severity (up to 25%) 
and deoxynivalenol accumulation (up to 51%) on durum wheat under 
field conditions.

Fungi and yeasts as antagonists
In a study by Xue et al.63, significant reduction in mycelial growth 
(52.6%), spore germination (~100%), perithecial production (>99%), 
FHB index (58%), DON concentration (21%) and number of FDKs 
(65%) was obtained by using Clonostachys rosea strain ACM941 as 
a BCA against FHB under laboratory, greenhouse and field conditions. 
Resultantly, C. rosea strain ACM941 is believed to be a promising BCA 
of FHB. Other fungal species that have been tested against FHB include 
Trichoderma spp.69 and Microsphaeropsis spp.70 According to Gilbert 
and Haber14, there are only a few yeast strains that have been reported 
to be effective against FHB compared to bacteria and fungi. Field trials of 
three strains of Cryptococcus spp. showed a reduction in FHB severity 
by as much as 50–60%.71 Reduction in FHB severity by Cryptococcus 
spp. was also observed in other similar studies.18,19,21,72,73

Breeding for resistance
Many researchers believe that genetic resistance is the best, most cost-
effective strategy that could provide meaningful, consistent and durable 
FHB control.51,74 According to Mesterházy et al.75, wheat resistance to FHB 
is not Fusarium species-specific, making it achievable by breeding for 
resistance to Fusarium species in general. Although there are variations in 
the susceptibility of different host plant species to FHB, there are no wheat 
or barley varieties that possess immunity against FHB.1,75 

Recent wheat breeding programmes for FHB resistance focus on 
mapping quantitative trait loci (QTL) that confer a response on two or 
more types of FHB resistance1,76, such as the Fhb1 derived from the 
Chinese wheat cultivar Sumai 31,76. A list of wheat cultivars that have 
been evaluated for FHB resistance in China, the USA, Japan and Brazil 
are presented by Shah et al.77 These landraces provide moderate to 
high resistance to FHB and some of them have been used as parents in 
breeding programmes.77

Nonetheless, resistance breeding programmes have been slow, resulting 
in only a few partially resistant cultivars being produced thus far.1,53 This 
could be attributable to FHB resistance in small grains being complex 
and inherited quantitatively.1,53 Consequently, there are no resistant 
cultivars commercially available in most parts of the world, including 
South Africa.1,22 However, partially resistant cultivars can be used to 
reduce disease incidence and severity.75 

Priming using resistance inducing chemicals
The use of resistance inducing chemicals such as jasmonic acid, 
ethylene and salicylic acid to enhance induced systemic resistance 
and systemic acquired resistance in wheat as means to control FHB 
has been previously studied.19,20 According to past research, salicylic 
acid signalling is believed to be responsible for basal resistance to 
FHB whereas jasmonic acid signalling reduces further infection by the 
pathogen.20,68 In a study by Palazzini et al.68, salicylic acid signalling 
was induced early (12 hours) after the inoculation of wheat spikes with 
F. graminearum whereas jasmonic acid signalling was induced later 
(after 48 hours). Nevertheless, further research (such as formulation 
development, optimum concentration and application timing) is required 
for resistance-inducing chemicals to be employed in FHB management 
programmes.19
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Integrated control strategies
As much as some control strategies provide certain levels of reduction 
in FHB severity and mycotoxin concentration, no single control strategy 
will provide significant control of FHB, especially under environmental 
conditions favourable for disease development.1,19,21,53,73,78,79 Therefore, 
the use of integrated disease management strategies is considered the 
best way to control FHB on cereal crops due to the increased reduction 
of FHB severity and DON concentrations that could be achieved.9,53,78

In a study to test the efficacy of an integrated approach to FHB control, 
McMullen et al.79 observed that the use of crop rotation, crop rotation + 
tolerant cultivar, crop rotation + tolerant cultivar + fungicide application 
resulted in 50%, 80% and 92% reductions in FHB, respectively. In a similar 
study, the combination of ploughing, a moderately resistant variety and 
triazole fungicide application at heading resulted in a 97% DON reduction 
on FHB-contaminated wheat grains.78 BCAs can be combined with other 
control strategies (such as fungicides) or co-cultured with other BCAs in 
the integrated management of FHB.19,21,73 In wheat field trials conducted 
by Schisler et al.21, the co-culture of C. flavescens OH182.9 and C. 
aureus OH71.4 significantly reduced FHB severity compared to when 
each of the agents was applied alone. This shows that the integration 
of effective management strategies has the potential to enhance FHB 
reduction and should thus be further researched. 

Way forward
Regardless of some reported efficacies, the inconsistency and lack 
of durability of BCAs65, and the residue and resistance development 
concerns associated with fungicides14,16 are major limitations in the 
development of FHB management strategies. Moreover, the use of 
agronomic practices in FHB management is not always feasible and/or 
economical in commercial farming systems. Some researchers believe 
that improving host genetic resistance could provide more meaningful, 
durable and consistent protection against FHB and its mainly produced 
mycotoxin, DON.51,74 Therefore, future research can be aimed at 
improving host resistance to FHB either by resistance breeding or by the 
use of resistance inducers. The isolation and testing of more effective 
natural antagonists of F. graminearum that can be integrated with other 
management strategies could help improve FHB control and reduce the 
risks associated with fungicide use.

Conclusion
FHB remains a major threat to wheat production worldwide. Although 
some strategies have provided some level of disease reduction, the 
current dependency on fungicides in FHB management practices poses 
concerns regarding fungicide resistance as well as environmental, 
human and animal health. Therefore, further research in the development 
of more effective and more reliable FHB management strategies is 
necessary.
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