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The aim of this study was to determine the most suitable time for harvesting marama (Tylosema 
esculentum) root as an alternative source of novel starch by evaluating the quality of marama root and 
its starch during growth periods of 12 months. The effects of time on the proximate analysis of marama 
roots as well as the thermal properties, size and physicochemical properties of the starch were also 
investigated. Marama was planted in September and total starch of marama roots on both as is and dry 
bases increased significantly (p<0.05) from 24 g/kg to 115 g/kg and 259 g/kg to 601 g/kg, respectively, 
from 2 to 12 months after planting. Amylose content significantly (p<0.05) decreased from about 50.7% 
to 21.4% of the starch for the same time period. The size of marama root starch granules significantly 
(p<0.05) increased from 8.6 µm to 15.1 µm. The marama root harvested after 2 months had the 
highest crude protein content (33.6%). In terms of thermal properties, the peak temperature decreased 
significantly with time (ranging from 93.0 °C to 73.4 °C), while the ΔH increased significantly with time. 
The findings indicate that marama should be planted early in summer and harvested between 4 and 
8 months for optimal starch before winter.

Significance:
Proximate and starch characteristics of marama storage roots differ significantly with time of harvest. 
This suggests that desired functional properties can be achieved by controlling growth time. The marama root 
harvested at 4 months is highly nutritious, it has high protein content, starch that is high in amylose and is 
suitable for consumption as a fresh root vegetable in arid to semi-arid regions where few conventional crops 
are able to survive. Marama root is a climate smart crop and it could potentially contribute to food security 
in arid regions. The results obtained in this study suggest that the optimum time for harvesting marama as 
a root vegetable is at 4 months while the optimum time for harvesting marama for its starch is at 8 months. 
Younger roots have higher amylose, and hence higher gelatinisation temperatures, and therefore may be more 
suitable to be used as a coating during frying. 

Introduction
Starch is the most common carbon reserve stored in plants; it is of great significance for both food and non-food 
industrial uses.1 About 75 million tonnes of starch is produced for worldwide industrial applications2 and about 
54% of the starch produced globally is utilised for food applications3. Starch is also a major source of energy in 
the human diet. It accounts for approximately 50% of calorie intake in developed countries and 90% of calorie 
intake in developing countries.4 Current sources of commercially available starch are a restricted range of crops, 
the most important being maize, potato, wheat and cassava with smaller amounts from rice, sorghum, sweet 
potato, arrowroot, sago and mung beans.5 The main crops in sub-Saharan Africa are maize, rice, pearl millet, 
sorghum, cassava, yam and sweet potatoes.6 However, there is no commercialised starch from indigenous staple 
crops in Namibia and they are underutilised. The underutilised crops may provide starches or flours with novel 
physicochemical properties. 

Marama is a wild-growing and drought-tolerant legume, native to the arid and semi-arid regions of southern Africa. 
It produces protein and oil rich seeds and is a storage root used as food.7 In Namibia it grows wild mainly in the 
Omaheke and Otjizondjupa regions, while it grows in the Limpopo, Gauteng and Northern Cape Provinces of 
South Africa.8 Marama is a storage root bearing plant that is indigenous to the Kalahari sandy region,9 and could 
prove to be a starch alternative due to its ability to survive aridity. Plant roots such as cassava and tubers such as 
potato are rich in starch and they are among the sources of starch for consumption or industrial use.10 According 
to Huang et al.11, roots and tubers contain 70–80% water, 16–24% starch and trace amounts of protein and lipids. 
The dry matter of roots and tubers mainly consists of starch, which accounts for approximately 70% of the total solids, 
thus making it the major component.12 Due to their high starch content, root and tuber crops are thus important staple 
foods and are also used as ingredients in processed foods across the world.12 Previous reports show that starch 
morphology, starch composition and the proximate composition of roots and tuber crops such as yam, cassava, 
potato and sweet potato are affected by the time of harvest. It has been shown that starch content and starch granule 
size increase with crop maturity in all roots and tubers while starch granule shapes remain the same.13-16

Both the seeds and the storage root of marama are used for consumption by local people.8 The seeds are roasted 
and eaten as a snack17 while the root is boiled or roasted for consumption as a vegetable18. Marama seeds and the 
storage root have a high nutrient value, and are rich in protein, oil and starch. Marama is a potential crop for arid 
areas where few conventional crops can survive because of its ability to grow naturally in the poor soil and dry 
conditions of Namibia. Marama has potential to be a climate change friendly food crop for southern Africa. It thrives 
in arid conditions due to the plant’s ability to employ several mechanisms to grow and survive in drought-stricken 
environments. Marama is able to withstand temperatures of up to 50 °C, it is also able to withstand limited water 
by reduced surface area of the leaves to reduce water loss and it can survive by making use of water stored in 
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the tuberous root. It also has a tap root that penetrates deep below the 
surface to allow access to subsoil water.19 The starch accumulation and 
physicochemical properties of the marama root have not been studied 
extensively. Marama root starch reportedly has a high viscosity and 
therefore has potential as a thickener in food products.20 Thus, research 
and product development are needed to exploit marama root starch. 
The objective of this study was therefore to investigate the influence 
of time on the proximate analysis of marama roots and the influence 
of time on the starch granule size, thermal and physicochemical 
properties of the marama root starch. The published paper by Adeboye 
and Emmambux20 concentrated on the physicochemical, morphological, 
thermal and pasting properties of marama storage root starch but 
did not study the effects of harvest time on the marama root starch. 
The marama roots used in their study were harvested 6 months after 
planting. We report the changes in the physicochemical properties of 
starch from marama roots over a period of 12 months. In addition, we 
provide the first report on changes during tuberous root development. 
The main aim of this study was to determine the most suitable time for 
harvesting by evaluating the quality of marama root and its starch at 
different times during a 12-month period.

Materials and methods
Samples
Marama plants were grown in a greenhouse on the University of Namibia 
NEUDAM campus, which is located at 22°30.105‟S and 017°20.824‟E, 
30 km east of Windhoek, the capital city of Namibia. Marama seeds 
were collected from an experimental field in Omitara which is located 
in the Omaheke region in the central eastern part of Namibia. Marama 
seeds (n=144) were planted in a greenhouse; each seed was planted 
in a 20-L pot. Seeds were planted in September when the daily average 
temperature was 28 °C and grown for 12 months. Roots were randomly 
selected at different stages of development for analysis. The roots were 
harvested in November, January, May and finally in September, equivalent 
to 2, 4, 8 and 12 months after planting, respectively. The analyses were 
done in harvested months. Some of the analyses were done on fresh 
roots while some were performed on freeze-dried roots. The roots were 
freeze dried and ground into flour for proximate, total starch content, 
amylose content and thermal properties analyses. 

Analyses

Size determination
The fresh mass of the roots was determined using a weighing balance, 
while the diameter of roots was determined using a vernier calliper. 
The diameter was measured in the middle longitudinal section of the 
marama root. The measurements were done at 2, 4, 8 and 12 months 
after planting. 

Determination of total soluble solids
Freeze-dried marama root was mixed with distilled water (10% 
slurry), filtered and the total soluble solids were measured using a 
digital refractometer. The total soluble solids were expressed as a Brix 
percentage. The refractometer was calibrated with distilled water before 
taking the measurements.

Proximate composition
Moisture, ash and crude fibre of freeze-dried marama roots were 
determined using Association of Official Analytical Chemists (AOAC) 
methods 925.45B, 942.05 and 962.09, respectively.21 Crude protein 
(Nx-6.25) was determined by the Dumas method, using the Leco CHN 628 
series nitrogen combustion system, which is an AOAC method (990.03).22

Total starch content
The Megazyme total starch assay kit (K-TSTA 07/11) (Megazyme 
International, Bray, Ireland) was used to determine the percentage 
composition of total starch in freeze-dried marama roots as described 
by McCleary et al.23 Thermostable α-amylase and amyloglucosidase 
enzymes were used to enzymatically hydrolyse starch to glucose and 
the glucose was quantified using glucose oxidase-peroxidase reaction. 
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The absorbance for each sample was read at 510 nm against the reagent 
blank using a spectrophotometer.

Amylose:amylopectin ratio
Megazyme amylose:amylopectin assay kit (K-AMYL 07/11) (Megazyme 
International Bray, Ireland) was used to determine the amylose:amylopectin 
ratio of freeze-dried marama roots as described by Gibson et al.24 who 
used a modification of a procedure described by Yun and Matheson25. 
The amylose was determined by the precipitation of amylopectin 
with lectin concanavalin-A protein; amylose was then enzymatically 
hydrolysed to glucose and quantified using glucose oxidase-peroxidase. 
The absorbance for each sample was read at 510 nm against the reagent 
blank using a spectrophotometer.

Determination of thermal properties
Thermal properties of ground freeze-dried marama root were determined 
using the method described by Wokadala et al.26 Thermal properties 
were analysed using a high-pressure differential scanning calorimetry 
system with STARe software (HPDSC-827, Mettler Toledo, Greifensee, 
Switzerland). A mass of 10 mg (dry weight basis) of freeze-dried marama 
root flour was dissolved in 30 mg distilled water and allowed to equilibrate 
for at least 2 h at room temperature. Scanning was done at temperatures 
from 40 °C to 125 °C at a rate of 10 °C/min. Indium (Tp=156.61 °C, 
28.45 J/g) was used as a standard to calibrate the differential scanning 
calorimetry system and an empty pan was used as a blank reference.

Root microstructure
A protocol was developed using fixing and staining procedures described 
by Ruzin27. The storage root (2-cm slices) was fixed in formalin–acetic 
acid and then dehydrated in an ethanol series, wax infiltrated and 
embedded. Cross sections of 10-µm thickness were prepared and 
mounted on slides before staining with periodic acid–Schiff, and counter 
staining with amido black 10B. Periodic acid–Schiff stains starch a bright 
fuchsia and amido black stains proteins in the cell walls a deep blue colour. 
Slides were viewed using a Zeiss Axio Imager 2 microscope (Oberkochen, 
Germany) and digital images were taken using an Axiocam ERC5S camera 
to determine starch accumulation, granule size and shape of the starch.

Statistical analyses 
Statistical analyses were conducted using the SPSS 21 statistical package 
(Chicago, IL, USA). The data were subjected to a one-way analysis of 
variance (ANOVA); p≤0.05 was considered significant. Duncan’s 
multiple range test was used to further compare the means to determine 
which of the means is significantly different. Data were presented as 
means±standard deviation. The independent variable in this study is time, 
while the dependent variables are the root and starch characteristics.

Results and discussion
Morphology and proximate composition
The marama root morphology and proximate composition of marama 
roots harvested at different times are presented in Table 1. As expected, 
the fresh mass and diameter of the marama root significantly increased 
(p<0.05) with time up until 8 months after planting. The root attained 
a weight of up to 420 g in 8 months. Bousquet28 reported that the 
marama storage root can reach a weight of up to 12 kg within a few 
unspecified years. However, roots can grow larger and a root weighing 
277 kg has been found in Botswana.29 The 8-month root weighed more 
than the 12-month root did – a difference which may be related to the 
winter months (June, July and August). Marama leaves and vines are 
lost during winter and sprout back after winter. Consequently, the plants 
could not produce photosynthate and thus the 12-month root weighed 
less than the 8-month root, although it was older. Because 12-month 
roots were harvested right after winter, it is suspected that the plants 
would then have had to rely on their reserves to survive winter.

The average moisture content of the fresh marama storage root 
significantly (p<0.05) decreased from 91% to 81% as root development 
progressed. The older roots appeared to be more fibrous then the 
younger roots, but the youngest roots appeared to consist mostly of 
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water. Similarly, young cassava roots contain less starch than older 
roots which also have a higher fibre content.13 The ash content of the 
ground marama storage root flour also significantly (p<0.05) decreased 
with time from about 6.3% to 3.1% from month 2 to 12. Ash content of 
yam tubers was also reported to be higher in tubers harvested during the 
early stages of growth than at later stages.11

The same trend was observed for the total soluble solids that significantly 
(p<0.05) decreased with time from 6.4% to 2.3% from month 2 to 12. 
Glucose is the first precursor of starch biosynthesis in the roots and 
tubers. Glucose and sucrose are soluble sugars; soluble sugars 
decreased significantly during the development of potato tubers.14 
There was a general increase in starch and a decrease in sugars during 
potato tuber development. Maturing of tubers is hence marked by the 
decline in sugars which is associated with an increase in starch.14 

A high sugar load correlated with the onset of starch accumulation at 
the beginning of tuber development and starch content increased rapidly 
thereafter.30 The decrease in total soluble solids in this study is probably 
due to a decrease in total soluble sugars (during starch biosynthesis and 
accumulation); further determinations are, however, necessary.

The crude protein content significantly (p<0.05) reduced from 33.6% 
to 2.7% from month 2 to 12. Similarly, there was a decrease in protein 
content during potato tuber development.31 A reduction of protein in 
this study is probably an indication of a decrease in protein synthesis. 
Potato tuber maturity is characterised by a progressive inactivation of 
the protein synthesis system.31 In general, marama storage root has a 
high protein content29 – higher than that of cassava (0.95–6.42%), sweet 
potato (3.15%), taro (6.28%) and yam (10.46%).32,33

Starch composition and thermal properties 
The total starch content of the ground marama storage roots (Table 2) 
significantly increased from 259 g/kg to 601 g/kg on a dry basis from 
month 2 to 12. The total starch content (fresh basis) of the marama root 
increased from 24 g/kg to 115 g/kg from month 2 to 12. As expected, 
both the dry weight basis and fresh basis total starch content of the 
marama root increased significantly with age (p<0.05). Similarly, a 
variation in the starch content of potato tubers and cassava roots 
harvested at different times has been reported, with the highest starch 
content recorded at 2–3 months for potato tubers.34 A previous report 
indicates that the total starch content of cassava roots increased with 
time until it reached its maximum at the 14th month.16 Changes in 
starch content are indicators of a variety of different plant development 
processes.35 Starch accumulation in roots is determined by a higher 
starch synthesis enzyme activity, a lower amylase activity (starch 
degradation) in the roots, the stem transport capacity and the expression 
of sugar transport genes. The starch synthesis capacity and low starch 
degradation in roots are strongly associated with a high accumulation of 
starch in storage roots at late growth stages.36

The total starch content on a fresh basis of the marama root for all the 
root samples was lower than 15%, with the lowest content being 24 g/kg 
and the highest being 115 g/kg. Nepolo37 reported that fresh marama 
root harvested after 3 months contains 87 g/kg total starch content. 
Their finding is in agreement with results in this study that show that 
the major component of the fresh marama root is water. In addition, 
besides water, other non-starch components also affect the total starch 
content of the marama root.20 The starch content in fresh potato tubers 

reportedly increased from 110 g/kg to 135 g/kg during potato growth.34 

The young marama root therefore contains very low starch content and 
genetic modifications might be required to increase the starch production 
of the roots. In order to establish marama root starch as an alternative 
source of starch and increase its economic value, it would be beneficial 
to increase starch production in marama roots.

Table 2:  Starch composition results of marama storage root

Harvesting 
month

Starch composition

Total starch  
(g/kg dry weight)

Total starch  
(g/kg fresh weight)

Amylose content  
(% starch basis)

2 259a±0.69 24a±0.06 50.7a±0.89

4 265a±0.75 28b±0.08 40.6b±5.14

8 490b±0.83 66c±0.11 26.6c±1.33

12 601c±1.47 115d±0.28 21.4c±0.40

Mean values followed by a different superscript letter in the same column are signifi-
cantly different (p<0.05; n=3).

The amylose content of the marama storage root starch (Table 2) 
determined by the precipitation of amylopectin significantly decreased 
with the maturity of the storage root (p<0.05) from 50.7% to 21.4% from 
month 2 to 12. A similar trend was observed for sweet potatoes, whereby 
the amylose content decreased with harvest time – the values reduced 
from 23.1% to 19.7%.15 Similarly, the amylose content of cassava root 
starch was also highest in the roots harvested early; it varied from 20.6% 
to 24.1%.16 Noda et al.38 also reported that the amylose content of potato 
starch decreased with time – the starch of the tubers harvested early in 
the trial had the highest amylose content (21.2%) compared to the tubers 
harvested late in the trial (20.2%). Our findings suggest that the amylose 
content decreases as the total starch content increases during storage root 
development, which is an indication of a delay in amylopectin synthesis 
as compared to amylose. The activity of granule-bound starch synthase, 
which is responsible for the synthesis of amylose, decreased, while 
that of soluble starch synthase, which is responsible for the synthesis 
of amylopectin, increased during the development of potato tubers.13 
The results suggest that younger roots contain high amylose starch. 
High amylose starch is highly sought after due to its unique functional 
properties. The starch in younger roots is higher than any amylose content 
reported in the literature for root and tuber starches. The roots and tuber 
starches are reported to have an amylose content ranging from 10% to 
38%.39 High amylose starch is considered to be an important source of 
food with highly resistant starch. High amylose starch could be used as 
an ingredient in the preparation of novel starch food to improve resistant 
starch content and hence decrease glycaemic load.40 When domesticated, 
farmers could decide when to harvest depending on the amylose content 
and thus the functional properties of the starch. The desired functional 
properties of starch can therefore be achieved by controlling growth 
time without the need for chemical or physical modifications of the 
starch for specific applications.34 However more analyses and research 
are recommended to study the mechanism of amylose and amylopectin 
accumulation in marama root.

Table 1:  Morphology and proximate analysis results of marama storage root 

Harvesting month Moisture (%) Mass (g) Diameter (cm)
Composition (% dry weight)

Ash Crude protein Total soluble solids Crude fibre

2 90.9a±1.36 14.6a±3.38 1.4a±0.19 6.3a±0.12 33.6a±0.06 6.4a±0.0 7.2a±0.26

4 89.4a±0.51 38.9a±4.70 2.7b±0.34 5.9a±0.34 14.0b±0.06 5.8b±0.06 6.7b±0.17

8 86.6b ±0.10 420.4b±62.61 6.5c±1.36 4.3b±0.25 3.3c±0.06 3.7c±0.11 6.8b±0.18

12 80.8c±1.42 326.4c±37.07 5.7c±0.30 3.1c±0.06 2.7d±0.05 2.3d±0.10 5.6c±0.13

Mean values followed by a different superscript letter in the same column are significantly different (p<0.05).

https://doi.org/10.17159/sajs.2020/6782
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The endothermic peaks of marama root flour samples are presented in 
Figure 1. The endothermic peaks yielded were probably due to starch 
gelatinisation and not protein denaturation. It was observed that the 
onset (To), peak gelatinisation (Tp) and conclusion (Tc) temperatures 
decreased with harvesting time while enthalpy change (ΔH) increased 
significantly (p<0.05). In contradiction, the temperatures of taro root 
increased with harvesting time, as did ΔH.41 The To, Tp and Tc for the 
4-month roots were 77.4 °C, 84.9 °C and 93.0 °C, respectively, while To, 
Tp and Tc for the 12-month root samples were 74.18 °C, 79.1 °C and 
84.6 °C, respectively. The ΔH for the 4-, 8- and 12-month root samples 
were 2.2 J/g, 8.2 J/g and 12.3 J/g, respectively.

Figure 1:  Differential scanning calorimetry curves of marama root 
harvested at different months (on a dry starch basis).

As expected, time had an effect on the thermal properties of the marama 
root starch, this finding may be attributed to the difference in the amylose 
content and starch granule size and also to the difference in other non-
starch components of the ground root flour samples. Thermal stability 
is a property that is influenced by various factors. No endothermic 
peak was yielded by the 2-month root flour sample in the temperature 
range 30–120 °C; this was probably due to low starch content, high 
concentration of non-starch components and high amylose starch 
in this root sample. It is difficult to accurately define the gelatinisation 
temperature of high amylose starch because of the flat endotherm.42 
High amylose starch has high gelatinisation temperatures; it is fully 
gelatinised at temperatures higher than 130 °C. 43-45

To, Tp and Tc decreased with crop maturity – this finding is positively 
linked with a decrease in other components of the root, such as protein, 
total soluble solids, ash content and fibre content. Thus, the younger 
roots had higher endotherm temperatures than the older roots. The higher 
endothermic temperatures could be due to the interactions of the starch 
with other starch components. The study of starch gelatinisation in 
flour samples is more complex due to the interactions that can occur 
between starch and other components present.46 Starch gelatinisation is 
delayed by the presence of sugars, because sugars decrease the water 
activity and interact with the starch chains.47 The effect of sugars on the 
gelatinisation of potato starch has been reported previously. Similarly, 
there was a decrease in peak temperature in this study as the total 
soluble solids decreased. The Tp for the gelatinisation of potato starch 
increased due to the interactions of the sugar with the starch and also 
the immobilisation of the water molecules.48 Moreover, proteins have an 
effect on the availability of water needed to interact with starch, thereby 
causing an increase in gelatinisation temperatures.49 The proteins 
form complexes with starch on the starch granule surface, decreasing 
amylose leaching and affecting water availability.50

Furthermore, ΔH increased with the maturity of the marama storage 
roots – this finding is positively linked with a decrease in amylose and 
an increase in amylopectin from 2 to 12 months, thus the crystallinity 
of the starch increased with crop maturity. Amylopectin content is a 
determining factor for starch crystallinity and hence thermal properties.43 
As the stability of the crystallites increase with crop maturity, ΔH also 
increases. A similar trend was observed in sweet potatoes, whereby 
ΔH was lowest in sweet potatoes harvested earlier.15 When amylopectin 
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content increases, ΔH also increases, thus normal starch has a lower 
ΔH than waxy starch. Waxy starch displays a higher ΔH, which reflects 
the higher percentage of crystallinity of the amylopectin.51 However ΔH is 
not only a function of the crystallinity but is also determined by a variety 
of other factors, such as interactions between non-starch components 
and the starch content of samples. 

The powdered marama roots harvested at 4 and 8 months had a higher 
range (To–Tc) of endothermic peaks compared with powdered marama 
roots harvested at 12 months. This finding indicates that the thermal 
stability of the powdered marama roots harvested at 2, 4 and 8 months 
was higher than the thermal stability of the powdered marama root 
harvested at 12 months. A higher thermally stable flour will take longer to 
cook, but may have desirable functional properties in the food industry, 
such as coating during deep frying.

Root microstructure
Figure 2 shows cross sections of marama storage roots harvested at 
different times. All the roots were characterised by parenchyma cells 
which contained the starch granules. Starch accumulation was observed 
in all marama roots regardless of age and was reflected by a purple 
or magenta colour. The periodic acid–Schiff stained the cell walls and 
the starch granules purple/magenta while the amido black stained the 
starch granule surface proteins and cell wall proteins a blue colour. 
The 2-month root had more cells that contained no starch granules than 
did the other root samples; hence this sample contained a lower total 
starch content than the other root samples. The periodic acid–Schiff 
stains insoluble carbohydrates that contain one or two glycol groups.52 
The marama starch granules are contained in parenchyma cells where 
they are synthesised in the amyloplasts. The micrographs of the marama 
storage roots cross sections were similar to those that were prepared 
by Rouse-Miller et al.53 for cassava roots. All micrographs showed 
purple/magenta-stained starch granules contained in parenchyma cells. 
The marama starch granules are stained a blue to black colour on the 
surface by the amido blue, which indicates the presence of surface 
proteins on the marama starch granules. Starch granules contain a small 
amount of granule-bound proteins; the granule proteins are found on the 
surface of the granules and on the interior parts.54 

a

c d

b

Scale bar = 20 µm

Figure 2:  Micrographs of marama root harvested at (a) 2 months, 
(b) 4 months (cell walls are not intact, probably due to poor 
fixation of the root), (c) 8 months and (d) 12 months. The starch 
granules are stained magenta with periodic acid–Schiff, which 
stains carbohydrates a purple or magenta colour, while amido 
black stains cell wall proteins and granule proteins blue. 

The sizes of the marama root starch granules appeared to be normally 
distributed (Figure 3). The average starch granule size of the marama root 
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starch significantly increased with time (p<0.05). The roots harvested 
after 2, 4, 8 and 12 months have an average granule size of 8.3, 9.3, 
11.9 and 15.1 µm, respectively. A similar trend was also observed in 
potato tubers during growth: the average granule size of potato tubers 
increased from 19.1 µm to 21.1 µm as potato growth time increased 
until it reached its highest level and then it decreased.34 Similarly, 
the average granule size of two different varieties of sweet potatoes 
increased with the stage of development (time), from 8.58 µm to 11.0 
µm.15 Our findings are in agreement with the observations of Noda et 
al.38, who showed that the average starch granule size of potatoes also 
increased with the stage of development. Previous research shows a 
positive correlation between potato tuber size and potato starch granule 
size.34 Similarly, an increase in marama root size positively correlated 
with the marama root starch granule size. There was a very strong 
positive correlation between marama root size and marama root starch 
granule size (r=0.798).

Figure 3:  Size distribution curve of marama root starch granules from 
roots harvested at 2, 4, 8 and 12 months.

The shapes of the marama starch granules are similar in all the marama 
root samples and time had no effect on the shape of the starch granules. 
The marama starch granules are spherical, oval or lenticular in shape. 
This observation is in agreement with that of Adebola and Emmambux20 
who reported that the shapes of marama starch granules were rounded, 
oval or lenticular, similar to those of potatoes but smaller in size. 
However, very few irregular-shaped granules were also observed in 
this study. Marama starch granules are almost similar in shape to the 
cassava starch granules, apart from the truncated shape of some of the 
cassava starch granules. Cassava starch granules were described as 
round, oval or truncated in shape.55

Conclusions
The chemical composition of marama storage root was affected by 
the age of the root. Marama root should be harvested for its starch at 
about 8 months and planting should be undertaken at the beginning 
of summer for optimal starch. Marama roots can also be harvested at 
4 months as a fresh vegetable due to the high nutritional value at this 
age. Young roots are high in protein and amylose starch. Our findings 
suggest that marama root can be used as an alternative source of starch 
and fresh root vegetable. Desired functional properties can be achieved 
by controlling growth time. The accumulation of starch, starch amylose 
and amylopectin, and starch molecular structure is different at different 
growth periods and further research is needed.
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