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The bulk of earth’s biosphere is cold (<5 °C) that sustains a broad diversity of microbial life by triggering 
physiological response(s) to ensure survival in cold and frozen ecosystems. The strategy of adaptation 
to cold environments includes changes in membrane composition and induction of a set of specific 
cold-active proteins, polyunsaturated lipids and exopolysaccharides. These adaptive features provide an 
enormous natural reservoir of enzymes that function effectively in cold environments, and these cold-
active enzymes have been targeted for innovative applications useful to humankind. This review provides 
an overview of the existence, distribution and adaptation strategies of psychrophilic microorganisms 
worldwide with great emphasis on their recently emerged industrial applications in the textile industry, 
food and dairy industry, brewing and wine industry, laundry detergent industry, and others.

Significance:
•	 The outcome of these studies may also help in the exploration of the possibility of life in distant 

frozen planets.

Introduction
A great proportion of the earth’s biosphere (>85%) permanently experiences temperatures below 5 °C.1 The 
largest coverage of these cold environments is successfully colonised by a wide diversity of extremophilic 
microorganisms, including bacteria, archaea, yeasts, filamentous fungi and algae.2,3 In 1887, Forster first reported 
the existence of bacteria capable of growth at 0 °C, especially in sea water and ocean fish.4 Cold-adapted or cold-
loving microbes are termed ‘psychrophiles’, and have cardinal growth temperatures (minimum, optimum and 
maximum) at or below 0 °C, 15 °C and 20 °C, respectively, while microorganisms that withstand cold temperatures 
with a higher growth optimum and maximum (above 25 °C) are called ‘psychrotolerant’.5 The ability to thrive at 
such low temperatures requires a vast array of adaptations to maintain the metabolic rates and sustain growth 
compatible with life in these severe environmental conditions.6 Because of their attractive properties, extensive 
research on psychrophilic microorganisms has been conducted to understand their survival strategies that include 
genetic and acclimation processes and adaptation mechanisms.7

The purpose of this review is to summarise the tremendous significance of this group of microorganisms in 
fundamental research, pharmaceuticals, medicine and recent biotechnological applications.

Psychrophiles: Historical background
In 1887, Forster early investigated the isolation of microorganisms from fish preserved by cold temperatures 
that were bioluminescent.8 Later in 1892, Forster reported other bacterial isolates from various environments 
(natural water, food, surface and intestines of freshwater and seawater fish) that were able to grow at 0 °C.4 
Schmidt-Nielsen (1902) first mentioned the term ‘psychrophile’ to describe bacteria capable of growing at 0 °C.9 
However, Müller (1903) criticised this term and demonstrated that while these organisms were able to grow at 
low temperature they actually grew more rapidly at elevated temperatures.10 Thus, Kruse (1910) suggested that 
these bacteria might be better called ‘psychrotolerant’, but this suggestion or others of similar nature did not gain 
acceptance and the term ‘psychrophile’ has retained.11 This confusion was ended in 1975, when Morita proposed 
a definition to the term ‘psychrophile’ for cold-adapted or cold-loving microbes, having minimum, optimum and 
maximum growth temperatures at or below 0 °C, 15 °C and 20 °C, respectively.12

Habitats and biodiversity
Cold habitats dominate the vast majority of our planet, covering three-quarters of the earth’s surface, and span 
from the Arctic to the Antarctic and from high-mountain regions to the deep ocean.13,14 The major fraction of 
this low temperature environment is represented by the deep sea (90% of the ocean volume), followed by snow 
(35% of land surface), permafrost (24% of land surface), sea ice (13% of the earth’s surface) and finally glaciers 
(10% of land surface). Other cold environments are cold-water lakes, cold soils, cold deserts and caves.15 These 
earth dominant environments are successfully colonised by enormously diverse communities of psychrophilic 
bacteria, archaea, algae, yeast16-20, insects21 and fish22, that are able to thrive and even maintain metabolic activity 
at subzero temperatures. 

Bacteria represent very important members of the sea ice habitat, including many unique taxa.23 Heterotrophic gas-
vacuolate bacteria, not reported in other marine habitats, have been discovered in and near sea ice.24 Among those 
cold-adapted bacteria, the genus Colwellia provides an unusual case. Members of this genus produce extracellular 
enzymes capable of degrading high-molecular-weight organic compounds. These traits make Colwellia species 
important to carbon and nutrient cycling wherever they occur in the cold marine environment, from contaminated 
sediments to ice formations as analogs for possible habitats on other planets and moons (e.g. Mars and Europa).13

Representatives of the family Vibrionaceae are among the most commonly reported bacteria to populate 
almost all extreme environments.25 Nevertheless, a wide range of phylogenetic diversity within the genera 
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Achromobacteria, Alcaligenes, Altermonas, Aquaspirillum, Arthrobacter, 
Bacillus, Bacteroides, Brevibacterium, Clostridium, Colwellia, Cytophaga, 
Flavobacterium, Gelidibacter, Methanococcoides, Methanogenium, 
Methanosarcina, Microbacterium, Micrococcus, Moritella, Octadecabacter, 
Phormidium, Photobacterium, Polaribacter, Polaromonas, Pseudomonas, 
Psychroserpens, Shewanella, Psychrobacter and Vibrio have been found 
to be psychrophilic across the domain Bacteria.26-29

In general, fungi are relatively rare in deep sea habitats compared to 
bacteria.30 Fungal isolates reported in frozen environments belong mainly to 
the genera Rhodotorula, Penicillium, Ustilago, Alternaria, Aureobasidium, 
Cladosporium, Geomyces, Ulocladium, Valsa and Verticillium.31-33

Existence and metabolic adaptation
Survival of psychrophiles in harsh and extremely cold environments 
is interesting and requires a vast array of unique adaptive features 
from all their cellular components.34,35 Chintalapati et al.36 categorised 
three phases of cold-shock response. Phase I, Acclimation Phase, 
immediately follows cold exposure, leading to reduced growth rate as 
a result of reduced membrane fluidity, and several cold-shock proteins 
are produced. During Phase II, Recovery Phase, cells are considered 
‘cold-adapted’ and resume growth and bulk protein synthesis 
restarts. During Phase III, Stationary Phase, non-cold-shock proteins 
are synthesised, allowing cells to proceed to slow-rate growth at 
low temperature.37

In general, bacteria owe the ability to cope with such challenges to complex 
strategies. One important strategy is directed towards their extremely 
efficient DNA repair mechanism sustained under frozen conditions.38 
This evidence for active DNA repair mechanism in icy environments is 
a true reflection of their physiological potential and survival in frozen 
substrates for extended time frames of up to 600 000 years.39

Regulation of membrane fluidity
Another important and the most frequent adaptive strategy relates to the 
ability of the cell to regulate or modulate the fluidity of the membrane in 
freezing environments. The membrane is the first barrier that can sense 
environmental changes and it acts as an interface between external and 
internal environments, so as to overcome the deleterious effects of harsh 
conditions.36 Shivaji and Prakash35 reported that membranes become 
more rigid at cold temperatures, which activates a membrane-associated 
sensor resulting in upregulation of genes involved in membrane fluidity 
modulation for exchange of metabolites from and to the cell.

Consequently, changes in the membrane lipid composition facilitate this 
process. This is achieved by modifications in the lipids’ fatty acyl chains 
that serve to maintain optimum membrane fluidity.40 In general, lower 
growth temperatures govern the activation of a group of cold-shock-
activated enzymes called ‘desaturases’ which convert saturated acyl 
fatty acids to unsaturated ones and aid the increase in the proportion of 
unsaturated acyl chains, reduction in the acyl chain length and increased 
methyl-branched fatty acids.36 Fungal cell membranes show evidence 
of similar changes at cold ecosystems to maintain their fluid state. 
The degree of unsaturated fatty acids increases at low temperatures 
in Candida, Leucosporidium and Torulopsis as reported by Kerekes 
and Nagy41.

Carotenoid pigments
Predominance of carotenoid pigments, in several bacteria isolated from 
Antarctic sea ice, has been reported to play an important role in the 
maintenance of membrane structure, fluidity and protection from UV 
radiation.42 Accumulation of C-50 carotenoid, Bacterioruberin, observed 
in the psychrotrophic strain, Arthrobacter agilis, was postulated to play a 
crucial role in the regulation of membrane fluidity at low temperatures.43 
Furthermore, several polar and non-polar carotenoid pigments, 
synthesised by Micrococcus roseus and Sphingobacterium antarcticus 
Antarctic strains, were found to bind vesicles, made of both synthetic 
and natural lipids, and to rigidify them.44 

Anti-freeze proteins 
Anti-freeze proteins (AFPs) are ice-binding proteins that have the ability 
to decrease the freezing point of water and show extracellular ice re-
crystallisation inhibition activity during latter stages of the warming 
cycle.45,46 Furthermore, AFPs have been well known in promoting super 
cooling of the body fluids at subzero temperatures to prevent freezing of 
blood in polar fish.47 In addition, those proteins have been reported in 
insects and plants.48,49 Duman and Olsen50 first demonstrated the presence 
of AFPs in cold-adapted bacteria and the bacterium Moraxella sp. was the 
first reported Antarctic strain to produce an AFP.51 Some psychrophilic 
AFPs have been purified from cell extracts of Micrococcus cryophilus, 
Pseudomonas putida and Rhodococcus erythropolis.52

Cryoprotectants
Cryoprotectants are exopolymeric substances (e.g. sugars, alcohols 
and amino acids), produced in high amounts and believed to prevent 
cold-induced aggregation of proteins and maintain optimum membrane 
fluidity under unfavorable low temperature.53,54 In 1994, Ko et al.55 
demonstrated the growth-enhancing effect of glycine betaine on 
Listeria monocytogenes at low temperature. Furthermore, trehalose 
showed evidence in preventing protein denaturation and aggregation 
in psychrophilic bacteria.56 In fungi, trehalose is an important stress 
protectant and stabiliser of membranes, accumulated in fungal hyphae 
in large quantities at low temperatures.57 

Cold-shock proteins
Cold-shock proteins have been extensively characterised and are 
considered the most prominent response of cells to cold shock in 
order to counteract the detrimental effect of temperature downshift; 
they play a critical role in cold adaptation.58 Cold-shock proteins have 
been functionally linked to the regulation of cellular protein synthesis, 
particularly at the level of transcription and initiation of translation. They 
also act as chaperones by preventing the formation of mRNA secondary 
structures (mRNA ‘folding’) and maintenance of chromosome 
structure.59,60 These stress proteins, together with cold-acclimation 
proteins, have been detected and exclusively overexpressed during the 
entire growth of several Antarctic bacteria.56 Furthermore, Kawahara 
et al.61 believed that the cold acclimation protein (Hsc 25) produced 
in an ice-nucleating bacterium Pantoea ananas KUIN-3, was capable 
of refolding cold-denatured enzymes that sustain biological activities 
following an abrupt temperature downshift. 

Cold-active enzymes
Cold-active or ‘cold-adapted’ enzymes are those enzymes that 
display high catalytic efficiency at low temperature compared to their 
mesophilic counterparts.62 Furthermore, Struvay and Feller63 reported 
multiple adaptive features developed by constrained psychrophiles to 
design enzymes perfectly compatible to the given environment. In the 
first attempt, psychrophiles produce enzymes that are highly flexible 
in structure, having an up to 10-fold higher specific activity (kcat) than 
their mesophilic homologues, thus providing better access to the active 
site of substrates at lower temperatures.64 These cold-active enzymes 
offset the inhibitory effect of low temperatures on reaction rates and 
maintain adequate metabolic fluxes to the growing organism. Secondly, 
the apparent maximal activity of cold-active enzymes is shifted towards 
low temperatures to cope with the increased viscosity of the aqueous 
environment induced under cold conditions. In this context, these 
enzymes are heat labile and frequently inactivated at temperatures that 
are not detrimental for their mesophilic counterparts.65 Finally, apart from 
their high catalytic efficiency, the adaptation to cold is not usually perfect, 
as the specific activity exhibited by most psychrophilic enzymes around 
0 °C remains generally lower than that of their mesophilic counterparts 
at 37 °C.

Pioneering studies compared cold-active enzymes to their conventional 
mesophilic forms and observed significant differences in amino acid 
composition, mostly in the active site domain, responsible for their 
activity under cold conditions.66 The criteria for structural alterations 
include increased clusters of glycine residues (providing local mobility) 
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and reduction in proline and arginine residues in loops, which provides 
enhanced chain flexibility between secondary structures and the 
capability of forming multiple salt bridges and hydrogen bonds, 
respectively.6 However, surprisingly, Aghajari et al.67 reported great 
similarity in the three-dimensional structure of a cold-adapted α-amylase 
enzyme of a psychrophilic bacterium, Alteromonas hulopfuncris, to those 
of mammalian α-amylases. 

A variety of cold-active enzymes – xylanases and laminarases68, 
chitinases69, α-amylase and β-galactosidase70,71, lipases and 
proteases20,72, aminopeptidase73 and protein-tyrosine phosphatase74 – 
have been reported in cold-adapted bacteria to aid in their survival under 
cold conditions. 

Biotechnological applications
Over recent years, considerable attention has been focused on psychro
philic microorganisms that proliferate in extremely cold niches and the 
fascinating biotechnological potential of their cold adaptation. Although 
Witter11 reported the significant opportunity of psychrophilic bacteria in 
the dairy industry and in keeping milk fresh under refrigeration facilities 
for longer holding times as far back as 1961, studies on psychrophiles 
have been accentuated by the advancements and applications 
in avoiding potentially disastrous situations in various industries, 
including those concerned with food production, waste processing, 
mining, environmental bioremediations, agriculture, and medicine and 
molecular diagnostics.75,76 

Bioremediation
Because of increasing human activities and demand for fossil 
fuel energy, spillage of petroleum products is a growing menace 
to the environment. Psychrophiles hold tremendous potential as 
‘environmental cleaners’ to successfully degrade pollutants of 
petroleum hydrocarbons in extreme cold conditions.77,78 Whyte et al.79 
reported that the microbial catabolic pathways responsible for the 
degradation of petroleum hydrocarbons, including n-alkanes and 
polycyclic aromatic hydrocarbons, are widespread in cold regions. 
Furthermore, several indigenous, cold-adapted microbial populations 
that use petroleum hydrocarbons have been detected, including 
Rhodococcus80, Pseudomonas81 and Pseudoalteromomas82.

Food industry
It has indeed emerged that cold-active enzymes represent an extremely 
powerful tool in the food industry. There is an increasing industrial trend 
to treat foodstuffs under low temperature conditions in order to avoid 
detrimental effects on taste, texture and nutritional value, and also to 
save energy. Cold-active β-galactosidase, which hydrolyses lactose 
to glucose and galactose at refrigerating temperature, is a potentially 
important enzyme in the dairy industry. It can be used to produce lactose-
free milk-derived foods for lactose-intolerant people, who represent 
approximately 30% of the world population.83 Furthermore, it can be 
used to convert lactose in whey to D-tagatose – a natural high-added-
value sweetener with low caloric and glycemic index.63 Hoyoux et al.84 
patented a cold-active β-galactosidase from an Antarctic psychrophile, 
Pseudoalteromonas haloplanktis, for its capacity to hydrolyse lactose 
during milk storage at low temperatures.

In this context, application of cold-active pectinases in the fruit juice 
industry is highly demanding to retain the quality and nutritional 
properties of the fruit juice and facilitate different processing steps – 
liquefaction, clarification and juice extraction – at low temperatures. 
Furthermore, residual enzyme activity could be easily eliminated by 
enzyme inactivation by moderate heat input after treatment.85 In wine 
industries, cold-active pectinases, isolated from yeasts and fungi, are 
believed to increase the production and retention of volatile compounds, 
thereby improving the aromatic profile of wines.86

Also, it is worth mentioning that cold-active xylanases, hydrolysing 
β-1,4-xylan present in all flours, are one of the key ingredients of 
industrial dough conditioners used at cool temperatures required for 
dough resting to improve bread quality. Following careful baking trials, 
xylanase from the Antarctic bacterium Pseudoalteromonas haloplanktis, 

effectively improved the mechanical dough properties and final bread 
quality with a positive effect on loaf volume.63

Medical and pharmaceutical applications
There is a growing interest in studying psychrophilic bacteria as new 
tools in pharmaceutical and cosmetic applications. Consequently, 
several promising psychrophilic strains were detected as a valuable 
source of new active antimicrobial compounds at low temperatures, 
as reported by Tomova et al.87 Recently, compounds produced by 
the halophilic Antarctic actinomycete Nocardioides sp. strain A-1, 
with antimicrobial activity against Xanthomonas oryzae which causes 
bacterial blight disease in rice-producing countries, exhibited promising 
application in agriculture for plant protection.88 In addition, it was 
found that Antarticine-NF3, an antifreeze glycoprotein produced by the 
Antarctic bacterium Pseudoalteromonas, is effective for scar treatment 
and has been included in cosmetic regeneration creams.89

Furthermore, polyunsaturated fatty acids, produced to improve mem
brane permeability and nutrient transport in psychrophilic bacteria, may 
constitute an economic alimentary source for aquaculture industries 
with favorable activities on cholesterol and triglyceride transport for 
optimal nervous system and cardiovascular health.90 

At the industrial level, the polar yeast Candida antarctica is used to 
produce two cold-active lipases, A and B, sold as Novozym 435 by 
Novozymes (Bagsvaerd, Denmark) involved in a very large number of 
applications related to pharmaceuticals and cosmetics.91

Detergent and fabric industry 
Considering the versatile properties of cold-active enzymes – such as 
high catalytic efficiencies at low temperature, lower thermal stability and 
novel substrate specificities – they offer a large reservoir of potentially 
novel biotechnological exploitation.75 Nowadays, the detergent field, 
which represents 30–40% of all enzymes produced worldwide, requires 
more enzymes that are capable of working at low temperatures in 
the context of energy saving. Cold-adapted enzymes actively used 
in detergent formulations – lipases, proteases and α-amylases – are 
systematically introduced to improve the efficiency of detergents and 
reduce the amount of chemicals used in order to protect the texture 
and colours of fabrics and reduce wear and tear during washing.6,64,92 
Currently, cold-active subtilisins, isolated from Antarctic Bacillus 
species, are incorporated in cold-active detergents that combine storage 
alkaline stability and cold activity required for optimal washing results.63

Furthermore, the application of cold-adapted cellulases in fabric 
production and denim finishing could increase the smoothness and 
softness of tissues, decolourisation of textile effluents and textile 
bleaching and allows the development of environmentally friendly 
technologies in fibre processing.93

Conclusion
Over recent years, a wealth of knowledge has been accumulated 
on psychrophilic microorganisms and their cold-shock response 
catalysts. Because of their unique biological features, psychrophiles 
can be significantly exploited in biotechnological industries such as 
the pharmaceutical, enzyme production, bioremediation, biosensor, 
cosmetic, agriculture, domestic purposes and textile industries. The 
outcome of these studies may also help to explore the possibility of life 
in distant frozen planets and their satellites.
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