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Sprites are the optical signatures of electrical discharges in the mesosphere triggered by large lightning 
strikes associated with thunderstorms. Since their discovery in the late 1980s, sprites have been 
observed extensively around the world, although very few observations of sprites from Africa have been 
documented in the literature. In this paper, we report the first ground-based recorded observations of 
sprites from South Africa. In 2 out of the 22 nights of observations (11 January and 2 February 2016), 
about 100 sprite elements were recorded from Sutherland in the Northern Cape, comprising different 
morphologies (carrot (55%), carrot/column (11%), unclassified (21%), column (13%)). The sprites were 
triggered by positive cloud-to-ground lightning strikes, which had an average peak value of ~74 kA and 
were observed at distances from ~400 km to 800 km. The estimated charge moment change of the 
lightning discharges associated with these events was in agreement with the threshold for dielectric 
breakdown of the mesosphere and correlates well with the observed sprite brightness.

Significance:

•	 The first ground-based recording of sprite events over southern Africa.

•	 It is suggested that the intensity of the events is proportional to the lightning stroke current.

Introduction
Anecdotal accounts of sporadic brief optical emissions appearing above thunderstorms have been found in the 
scientific literature for many years.1-4 Such phenomena were also noted by South African observers. For instance, 
in 1937, Malan5 reported seeing a different kind of lightning in Johannesburg, at an approximate altitude of 50 km. 
He noted: 

On the evening of 2 January 1937, there was a long cloud bank about 100 km to the 
northeast... During the span of an hour and a half, a long and weak streamer of reddish 
hue appeared about ten times in the upper cloud simultaneously with a weak illumination 
of the same cloud. I assume the weak illumination was due to cloud-to-ground discharge 
(CG) behind the hills. 

These anecdotal pieces of evidence were not corroborated until 1989, when Prof. J. Winckler’s group accidentally 
discovered a flash of light, illuminating the sky above a distant thunderstorm.6 This discovery sparked interest in 
such phenomena and their potential dangers to crewed spacecraft during take-off or landing. This interest later led 
to the discovery of all other optical phenomena in the stratosphere and mesosphere (ELVES, blue jets, halos, and 
gigantic jets), which were collectively termed transient luminous events.7,8 

Sprites are short-lived optical phenomena occurring above large thunderstorms. They are often described as large 
electrical discharges in the mesosphere.9 When observed with a high-speed camera,10,11 they appear to move 
downwards (for positive streamers) and then upwards (for negative streamers) with a speed in excess of 107 m/s. 
They are mostly associated with positive cloud-to-ground (+CG) lightning strikes, which transfer a positive charge 
to the ground12-14, although some studies have revealed that, on rare occasions, negative cloud-to-ground (-CG) 
lightning strikes can also initiate sprites15,16. 

Sprite research has been actively conducted in the USA, Asia, Europe, South America and Australia.12,17-20 Sprites 
have also been successfully studied from the International Space Station over central Africa, northern Australia 
and South America, as well as over the Pacific and Indian Oceans.21-23 These studies have led to many discoveries 
(e.g. the ELF radiation produced by the electrical current in sprites24 and the energy deposited by large sprites is 
of the order 1 GJ/event25), which have been documented in numerous scientific publications describing the sprite 
phenomenon and its dynamics26-28. 

Some of these studies suggest that, apart from contributing to the global electric circuit, sprite initiation can also 
affect the chemistry of the middle atmosphere by altering the composition of the oxides of nitrogen and hydrogen. 
These chemical changes could have an impact on the heating or cooling of this region29 or interfere with long-
distance communication through the lower ionosphere30. Thus, it is important to determine the occurrence rate and 
geographical distribution of sprites and the energy associated with these events in order to verify these assertions. 
The global occurrence rate for sprites has been estimated to be 1–3 sprite events every minute.25,31-33

Despite being a lightning-rich continent34, there is currently no active ongoing sprite-related research in Africa, 
although there were a few observations carried out in West Africa during the 2006 African Monsoon Multidisciplinary 
Analysis campaign35. In this paper, we describe the observations that led to the first ground-based recording of 
sprites over southern Africa.
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Observations
Instrumentation
The optical instrument used for the observations reported in this paper 
was a Watec 910Hx camera, which has a 40-ms time resolution and 
was operated with a 80-ms temporal resolution in order to improve the 
signal-to-noise level. This camera is a standard low-light commercially 
available monochromatic charge-coupled device (CCD) camera 
(Figure 1), which is commonly used by observers of transient luminous 
events in Europe, the USA and Israel.36,37 The CCD detector array of 
352 by 288 pixels was oriented with the long axis of the detector in the 
horizontal plane. The camera was fitted with a 8.0 mm F/1.4 lens. The 
field of view on the detector was 35.3° horizontal and 26.6° vertical, as 
determined by reference to known background stars on the image. This 
gives a horizontal/vertical angular resolution of 0.10/0.09° per pixel. The 
camera records video frames with 8-bit resolution.

 

Figure 1: The camera used during the sprite observations. 

 

Figure 1:	 The camera used during the sprite observations.

The camera was connected through a video digitiser (Pinnacle Dazzle) 
to a computer that ran the Sonotaco sprite capture software version 2 
(http://sonotaco.com/soft/e_index.html). The software has a triggering 
mechanism that allows it to read out the CCD continuously, but only 
stores data according to the detection threshold that was set by the 
operator. To ensure the accuracy of the timing system, the computer was 
connected to the Network Timing Protocol server of the South African 
Astronomical Observatory (SAAO) in Sutherland, which has a time 
resolution of approximately 100 µs. 

Camera pointing angle
Previous studies have shown that sprites occur within the mesosphere at 
an altitude range of ~40–90 km, with maximum brightness at an altitude 
of ~68 km lasting several milliseconds.38,39 Thus, it was necessary to 
point the camera at the right elevation for a successful observation. 
Equation 1 relates the pointing elevation angle for the camera to different 
distances and altitudes for a given viewing geometry as shown in 
Kosch et al.40 

tan[90-θ] = (h + Re) sin Re
d

  / (h + Re) cos 
Re
d - Re ,	 Equation 1

where θ is the observation elevation angle; h is the altitude above ground, 
Re = 6370 km and is the radius of the earth, and d is the distance of the 
storm from the camera along a great circle arc.

Thus, for h = 100 km (lower boundary of the nighttime ionosphere): 

d = 100 km => θ = 44.3º

d = 200 km => θ = 25.5º

d = 300 km => θ = 17.0º

d = 400 km => θ = 12.1º 

The orientation of the camera (azimuth and elevation angle) was 
determined during the analysis, by identifying the stars recorded in the 
image, which can be done to single-pixel accuracy. 

Observation technique 
This instrument was set up at the SAAO in Sutherland, Northern 
Cape, South Africa (20.8117 E, 32.3872 S) and operated during the 
seasonal peak lightning period in southern Africa from December 2015 
to February 2016.41 SAAO was an ideal location for such observations 
because of its altitude (1798 m) above sea level. This location was also 
chosen because of its clear dark night sky that is free of light pollution 
from cities, which allows the optical instrument to observe any transient 
luminous events up to a 900 km radius from SAAO.

When to operate the camera and where to point it was determined in 
near real time by observing storm activities over southern Africa using 
Meteosat infrared imagery, which is made available in near real time 
by EUMETSAT (http://www.eumetsat.int/website/home/index.html). 
This information was also complemented by lightning forecast data 
from the SAT24 website (http://en.sat24.com/en/forecastimages/afrika/
forecastlightning). The Meteosat infrared imagery is automatically 
updated every 15 min, making it possible to track a storm almost in real 
time. The infrared band was chosen to enable us to identify the brightest 
part of the cloud because the brighter the cloud, the colder and the more 
likely it is to produce lightning strokes.42

  

 

 

a

b

Figure 2:	 Meteosat infrared imagery showing the thunderstorms tracked 
on the nights of (a) 11 January 2016 and (b) 2 February 2016. 
The triangle shows the observation point. The circle shows 
the storm, which was ~350 km from the observation point in 
(a) and ~280 km in (b).
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For each night of sprite observation, the Meteosat imagery over southern 
Africa was examined for storm activity to select the camera viewing 
azimuth. For thunderstorms beyond 400 km from the observation point, 
an elevation angle of 15° was used to avoid pointing the bottom edge of 
the camera’s 26.6° vertical field of view below the horizon and imaging 
lightning strokes that cause false detections. As most of the storms 
observed during the campaign occurred beyond 250 km away, the 
value used for the elevation angle was set to ~15°, whereas the azimuth 
was regularly adjusted based on the nightly lightning strike forecasts. 
Figure 2 shows some examples of the Meteosat imagery used. As the 
storm weakened, moved or became more active in another area, the 
camera was manually adjusted to point in the direction of the most 
intense lightning activity. Observations of a particular storm typically 
lasted several hours. Depending on the number of cells that make up 
a cumulonimbus cloud, an average active storm can remain energetic 
up to 3  h before weakening (Lennard C 2016, oral communication, 
January 15).

Results
On 2 of the 22 nights of observations, a total of 54 video frames 
comprising ~100 sprites were recorded. By visual inspection, these 
events exhibit different shapes/structures, which include carrot (55%), 
column (13%), carrot/column (11%) and unclassified (21%). The 
naming of these groups depends on the final structure of the emission 
as described by Bor43. Figure 3 shows an example of the different types 

of sprites recorded during these observations, and Table 1 presents the 
structural statistics of all the events. 

Table1:	 Structural statistics of recorded events

Sprite type Distribution (%) Links to video frames of the events 

Carrot 55 20160111_18:53:49.4

Carrot/column 11 20160111_19:17:09.8

Unclassified 21 20160111_19:49:19.7

Column 13 20160111_19:38:32.5

Data analysis
The sprite images were superimposed on the star catalogue of the 
Sonotaco sprite analyser software (http://sonotaco.com/soft/e_index.
html) version 2. This software uses the star coordinate data that were 
extracted from the SKY2000 Master Catalogue, version 4. The stars on 
the sprite images were manually aligned to the stars in this catalogue 
to within single-pixel resolution to estimate the azimuth, elevation and 
location (longitude and latitude) of each of these sprite elements. 

a

c d

b

    

    

Figure 3:	 Some examples of the sprite elements recorded on 11 January 2016 with variable zoom: (a) carrot-shaped sprite observed at 18:53:49.4 UTC, 
(b) seven column-shaped sprites observed at 19:38:32.5 UTC, (c) unclassified sprite observed at 20:08:03.3 UTC, (d) two-carrot/four-column-
shaped sprite observed at 19:17:09.8 UTC. Panel (a) shows the very first sprite image that was recorded over southern Africa. The dark square in 
the bottom left in panels (b)–(d) is a telescope dome in the foreground. The bright spots are stars.
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The azimuth uncertainty when locating sprites using simple geometry 
depends on the distance from the camera to the sprite. For a typical 
range of 600 km and horizontal pixel resolution of 0.1°, the azimuthal 
uncertainty translates to ±0.5 km per pixel. The distance (d) is 
determined from Equation 1 by measuring the elevation angle (θ) to the 
top of the sprite and assuming an initiation altitude (h) of 85 km.9,38,44 The 
range uncertainty consists of the star-fit image pixel jitter in the vertical 
direction (1-pixel, which is equivalent to 0.09°) and the sprite initiation 
altitude (5 km).12 Again, for a typical range of 600 km, the uncertainty 
was ±27 km, which is dominated by the uncertainty in the sprite 
initiation altitude. 

Archival lightning stroke data over South Africa were obtained from the 
South African Weather Service (SAWS). The SAWS operates a network 
of sensors that detect lightning strokes over South Africa.45 The system 
uses magnetic direction finding and time of arrival of the lightning stroke 
to determine the actual time and location of the lightning strokes in 
real time. For post-processing of the sprite events recorded during the 
observations at 80 ms (2 TV frames), the initiation timestamp on the 
images together with the coordinates retrieved from the Sonotaco sprite 
analyser software were compared with the lightning stroke data set from 
SAWS in position and time, with the assumption that sprites could be 
initiated within a 50 km distance from the parent lightning stroke46,47 and 
within the 80 ms image temporal resolution.

Distance estimation
Sprites are believed to initiate at altitudes ~85 km9,38,44 with maximum 
brightness around 68 km12. By measuring the elevation angle, we were 
able to estimate the distance between the source and observer. The 
viewing elevation angle was retrieved by star fitting the image frames to 
many corresponding reference stars in the catalogue. We then derived 
Equation 2 from Equation 1 in order to solve for the distance (d). 

d = Re [θ-sin-1(Re sinθ
h + Re)]	 Equation 2

The results from this calculation show that most of the sprite events 
occurred approximately between 540  km and 680 km from the 
observation point. Where the sprites comprised several sprite events in 
a group, the distance was estimated from the centre of the group. The 
error in this estimate for one pixel offset in the horizontal and vertical 
direction was ±5% of the average distance from the observation point. 

Sprite brightness estimation
Sprite brightness was estimated by using the ImageJ software (https://
imagej.net/Welcome). We first averaged the scintillation effects of a star 
that was present in all the video frames of each captured sprite video 
clip. This step was done to obtain an average intensity value for the star 
(Staravg) because it has a constant brightness. We then applied a 7 x 7 
median filter on all the individual TV frames containing sprites to remove 
the background stars (Figure 4). Next, we measured the brightness of 
an area (same height and width) with a sprite element and background 
sky (Sp+Sky) and also the brightness of two adjacent areas of the sky 
without sprite elements (Sky1, Sky2; marked ‘1’, ‘2’ on Figure 4b) and 
recorded their average (Skyavg). The essence of using the average was 
to minimise errors in the estimation of the sky background. Thereafter, 
we subtracted Skyavg from Sp+Sky to estimate the sky-subtracted 
brightness of each sprite element (Spbgt). Finally, we normalised the 
sprite brightness (Spbgt) by dividing each of these values by the average 
brightness of the reference star (Staravg). Because brightness is inversely 
proportional to the square of the distance, we finally divided each result 
by the square of its corresponding distance to the observation point. 
Supplementary table 1 shows a list of all the sprite events recorded on 
11 January 2016, along with their corresponding parameters.

Charge moment change estimation 
The charge moment change (CMC) is an important lightning metric 
for sprite studies that is not measured by the Lightning Detection 
Networks. It is defined as the product of the charge and the altitude 
from where these charges were lowered to the ground.48 Analogous 
to a capacitor, the amount of charge and its separation distance 
determines the voltage and it is the electric field generated by the 
charge displacement during a lightning strike that triggers sprites. The 
CMC data were obtained from the Schumann resonance station in 
Hungary (NCK; 47.62°N, 16.72°E). This station is located ~8947 km 
away from SAAO. The system records both the vertical electric field 
components (Er) and the horizontal magnetic field components (HNS 
and HEW) associated with lightning strokes.49 The CMC associated with 
some of the sprite events was retrieved from the electric component of 
the parent lightning strokes as described in Huang et al.50 This analysis 
is simpler when observing the signals in the far field, hence Schumann 
resonance observations from lightning in South Africa were made in the 
northern hemisphere. Because of the relatively high noise level in the 
Schumann resonance system during these observations, only about 
20% of the events that were observed were satisfactorily processed. 

 

                                             a                                                            b 

                       

Figure 4: Sprite image (a) before and (b) after applying a 7 x 7 median filter to remove the  

a b

Figure 4:	 Sprite image (a) before and (b) after applying a 7 x 7 median filter to remove the background stars. The boxes marked ‘1’ and ‘2’ indicate 
the locations used to derive the sky backgrounds (Sky1, Sky2). The average of these sky backgrounds was used to derive the sky-subtracted 
brightness of the sprite elements. 
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The CMC associated with these processed events ranged from 900 
C.km to 2000 C.km. These values are consistent with the findings of 
earlier studies51,52 and were in agreement with the theoretical threshold 
(500–1000 C.km) for dielectric breakdown of the mesosphere35. 
Figure 5 shows the relationship between sprite brightness, as described 
above, and charge moment change for all events for which Schumann 
resonance data and their corresponding parent CG lightning strike were 
available (Supplementary table 1).

 

 
Figure 5:	 The relationship between the sprite luminosity and the charge 

moment of the lightning discharges for the events where 
Schumann resonance data and the parent cloud-to-ground 
lightning strike were available.

Discussion
As these were the first recorded ground-based images of sprites in 
southern Africa, we began our analysis with a simple visual inspection 
of our sprite images to compare them with images recorded in other 
parts of the world. This comparison showed that the various structures 
we recorded were approximately the same as those recorded elsewhere. 
Whilst the physical mechanism(s) that is responsible for the formation 
of the column and carrot-shaped sprites has been proposed by Qin53, 
the mechanism that is responsible for other structures of sprites remains 
poorly understood. 

Our analysis also shows that, for the sprite events that were associated 
with their corresponding lightning strokes, the average lightning peak 
current associated with these sprite initiations was ~74 kA, and that 
the maximum and minimum current values were 191 kA and 11 kA, 
respectively. In all cases, the initiating lightning strikes were positive 
cloud-to-ground lightning strokes (+CGs). These values were derived 
from the lightning strike location data sets from the SAWS network. The 
average displacement between each of the sprite elements and the parent 
lightning flashes was ~15 km, which is well within our measurement 
uncertainty and is in agreement with several earlier studies.38,46,47 

A quasi-linear relationship is observed between the CMC and sprite 
brightness37,54 for the events for which their corresponding Schumann 
resonance data and parent CG lightning strike were available. The larger 
the CMC, the larger the electric field generated and the greater the optical 
signature of the resultant gas discharge. 

Conclusion
Sprites have been photographically recorded for the first time in southern 
Africa since the earliest sightings reported anecdotally in 1937. We 
suggest that sprites in southern Africa have the same morphology as 
those recorded elsewhere and that the CMC of the recorded events 
agrees with the threshold for dielectric breakdown of the mesosphere. 
We have also shown that sprite brightness is related quasi-linearly with 
CMC, as earlier suggested by Yaniv et al.37 We plan to observe sprites in 
future using multiple cameras with filters to extract spectral information 
and estimate the characteristic energy of the electrons within a sprite.
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