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We implement a master-slave parallel genetic algorithm with a bespoke log-likelihood fitness function to 
identify emergent clusters within price evolutions. We use graphics processing units (GPUs) to implement 
a parallel genetic algorithm and visualise the results using disjoint minimal spanning trees. We demonstrate 
that our GPU parallel genetic algorithm, implemented on a commercially available general purpose GPU, is 
able to recover stock clusters in sub-second speed, based on a subset of stocks in the South African market. 
This approach represents a pragmatic choice for low-cost, scalable parallel computing and is significantly 
faster than a prototype serial implementation in an optimised C-based fourth-generation programming 
language, although the results are not directly comparable because of compiler differences. Combined with 
fast online intraday correlation matrix estimation from high frequency data for cluster identification, the 
proposed implementation offers cost-effective, near-real-time risk assessment for financial practitioners.

Introduction
Advances in technology underpinning multiple domains have increased the capacity to generate and store data and 
metadata relating to domain processes. The field of data science is continuously evolving to meet the challenge 
of gleaning insights from these large data sets, with extensive research in exact algorithms, heuristics and meta-
heuristics for solving combinatorial optimisation problems. The primary advantage of using exact methods is the 
guarantee of finding the global optimum for the problem. However, a disadvantage when solving complex (NP-hard) 
problems is the exponential growth of the execution time proportional to the problem instance size.1 Heuristics tend 
to be efficient, but solution quality cannot be guaranteed and techniques often are not versatile.2 Meta-heuristics 
attempt to consolidate these two approaches and deliver an acceptable solution in a reasonable time frame. A large 
number of meta-heuristics designed for solving complex problems exist in the literature and the genetic algorithm 
(GA) has emerged as a prominent technique, using intensive global search heuristics that explore a search space 
intelligently to solve optimisation problems. 

Although the algorithms must traverse large spaces, the computationally intensive calculations can be performed 
independently. Compute Unified Device Architecture (CUDA) is Nvidia’s parallel computing platform which is well 
suited to many computational tasks, particularly those for which data parallelism is possible. Implementing a GA to 
perform cluster analysis on vast data sets using this platform allows one to mine through the data relatively quickly 
and at a fraction of the cost of those of large data centres or computational grids.

A number of authors have considered parallel architectures to accelerate GAs.3-10 While the work of Kromer et al.7 is 
conceptually similar to the implementation proposed in this paper, a key difference is our choice of fitness function 
for the clustering scheme.

Giada and Marsili 11 propose an unsupervised, parameter-free approach to finding data clusters, based on the 
maximum likelihood principle. They derive a log-likelihood function, where a given cluster configuration can be 
assessed to determine whether it represents the inherent structure for the data set: cluster configurations which 
approach the maximum log-likelihood are better representatives of the data structure. This log-likelihood function 
is thus a natural candidate for the fitness function in a GA implementation, where the population continually 
evolves to produce a cluster configuration which maximises the log-likelihood. The optimal number of clusters 
is a free parameter, unlike in traditional techniques where the number of clusters needs to be specified a priori. 
While unsupervised approaches have been considered (see Omran et al.12 and references therein), the advantage 
of the Giada and Marsili approach is that it has a natural interpretation for clustering in the application domain 
explored here.

Monitoring intraday clustering of financial instruments allows one to better understand market characteristics and 
systemic risks. While GAs provide a versatile methodology for identifying such clusters, serial implementations are 
computationally intensive and can take a long time to converge to a best approximation. In this paper, we introduce 
a maintainable and scalable master-slave parallel genetic algorithm (PGA) framework for unsupervised cluster 
analysis on the CUDA platform, which is able to detect clusters using the Giada and Marsili likelihood function. 
Applying the proposed cluster analysis approach and examining the clustering behaviour of financial instruments, 
offers a unique perspective to monitor the intraday characteristics of the stock market and the detection of 
structural changes in near real time. The novel implementation presented in this paper builds on the contribution 
of Cieslakiewicz13. While we provide an overview and specific use-case for the algorithm in this paper, we also are 
investigating aspects of adjoint parameter tuning, performance scalability and the impact on solution quality for 
varying stock universe sizes and cluster types.

Cluster analysis
Cluster analysis groups objects according to metadata describing the objects or their associations.14 The goal 
is to ensure that objects within a group exhibit similar characteristics and are unrelated to objects in other 
groups. The greater the homogeneity within a group, and the greater the heterogeneity between groups, the more 
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pronounced the clustering. In order to isolate clusters of similar objects, 
one needs to utilise a data clustering approach that will recover inherent 
structures efficiently.

The correlation measure of similarity
The correlation measure is an approach to standardise data by using the 
statistical interdependence between data points. Correlation indicates 
the direction (positive or negative) and the degree or strength of the 
relationship between two data points. The most common correlation 
coefficient which measures the relationship between data points is 
the Pearson correlation coefficient, which is sensitive only to a linear 
relationship between points. The Pearson correlation is +1 in the case of 
a perfect positive linear relationship, -1 in the case of a perfect negative 
linear relationship and some value between -1 and +1 in all other cases, 
with values close to 0 signalling negligible interdependence.

Clustering procedures
Any specific clustering procedure entails optimising some kind of 
criterion, such as minimising the within-cluster variance or maximising 
the distance between the objects or clusters.

Cluster analysis based on the maximum likelihood principle
Maximum likelihood estimation is a method of estimating the parameters 
of a statistical model. Data clustering on the other hand deals with the 
problem of classifying or categorising a set of N objects or clusters, so that 
the objects within a group or cluster are more similar than objects belonging 
to different groups. If each object is identified by D measurements, then 
an object can be represented as a tuple, xi = (xi

(1),..., xi
(D)), i=1,...,N in a 

D-dimensional space. Data clustering is used to identify clusters as more 
densely populated regions in this vector space. Thus, a configuration of 
clusters is represented by a set S={s1,...,sN} of integer labels, where 
si  denotes the cluster to which object i belongs and N is the number of 
objects11 (if si=sj=s, then object i and object j reside in the same cluster), 
and if si takes on values from 1 to M and M=N, then each cluster is a 
singleton cluster constituting one object only. 

Analogy to the Potts model
One can apply super-paramagnetic ordering of a q-state Potts model 
directly for cluster identification.15 In a market Potts model, each stock 
can take on q-states and each state can be represented by a cluster 
of similar stocks.15-17 Cluster membership is indicative of some 
commonality among the cluster members. Each stock has a component 
of its dynamics as a function of the state it is in and a component of its 
dynamics influenced by stock specific noise. In addition, there may be 
global couplings that influence all the stocks, i.e. the external field that 
represents a market mode.

In the super-paramagnetic clustering approach, the cost function can 
be considered as a Hamiltonian function whose low energy states 
correspond to cluster configurations that are most compatible with 
the data sample. Structures are then identified with configurations 
S = {si}

N
i=1 for the cluster indices si which represent the cluster to which 

the ith object belongs. This allows one to interpret si as a Potts spin in the 
Potts model Hamiltonian with Jij decreasing with the distance between 
objects.15,16 The Hamiltonian takes on the form:

Hg = –         Jij δ (si , sj ) – 1
β

si ,sj⋲S i

hi
M Si ,∑ ∑

 Equation 1

where the spins si can take on q-states and the external magnetic fields 
are given by hi

M. The first term represents common internal influences 
and the second term represents external influences. We ignore the 
second term when fitting data, as we include shared factors directly in 
later sections when we discuss information and risk and the influence of 
these on price changes.

In the Potts model approach, one can think of the coupling parameters 
Jij as being a function of the correlation coefficient.16,17 The coupling 
parameters are used to specify a distance function that decreases with 
distance between objects. If all the spins are related in this way then each 

pair of spins is connected by some non-vanishing coupling, Jij = Jij (cij ). 
In this model, the case where there is only one cluster can be thought of 
as a ground state. As the system becomes more excited, it could break 
up into additional clusters and each cluster would have specific Potts 
magnetisations, even though net magnetisation may remain zero for 
the complete system. Generically, the correlation would then be both a 
function of time and temperature in order to encode both the evolution of 
clusters as well as the hierarchy of clusters as a function of temperature. 
In the basic approach, one is looking for the lowest energy state that fits 
the data. In order to parameterise the model efficiently one can choose 
to make the Noh18 ansatz and use this to develop a maximum-likelihood 
approach of Giada and Marsili17 rather than explicitly solving the Potts 
Hamiltonian numerically15,16.

Giada and Marsili clustering technique
Following Giada and Marsili17, we assume that price increments evolve 
under Noh18 model dynamics, whereby objects belonging to the same 
cluster should share a common component:

xi = gsi
ηsi

 +  1– g2
si
 εi . Equation 2

Here, xi represents the features of object i and si is the label of the cluster 
to which the object belongs. The data have been normalised to have 
zero mean and unit variance. εi is a vector describing the deviation of 
object i from the features of cluster s and includes measurement errors, 
while ηsi

 describes cluster-specific features. gs is a loading factor that 
emphasises the similarity or difference between objects in cluster s. In 
this research the data set refers to a set of the objects, denoting N assets 
or stocks, and their features are prices across D days in the data set. The 
variable i is indexing stocks or assets, whilst d is indexing days.

If gs=1, all objects with si=s are identical, whilst if gs=0, all objects are 
different. The range of the cluster index is from 1 to N in order to allow 
for singleton clusters of one object or asset each.

If one takes Equation 2 as a statistical hypothesis and assumes that both 
ηsi

 and εs are Gaussian vectors with zero mean and unit variance, for 
values of i,s=1,...,N, it is possible to compute the probability density 
P({xi} | G,S) for any given set of parameters (G,S)=({gs},{si}) by 
observing the data set {xi},i,s=1,...,N as a realisation of the common 
component of Equation 2 as follows11:

P({xi} | G,S) = ∏   ∏ δ(xi (d )–gsi
 ηsi +    1–g2

si
εi)

D

d=1 i=1

N

. Equation 3

The variable δ is the Dirac delta function and <...> denotes the 
mathematical expectation. For a given cluster structure S, the likelihood 
is maximal when the parameter gS takes the values

g*
S =

cS – nS for ns >1,
for ns <1.n2

S – nS

0

 Equation 4

The quantity ns in Equation 4 denotes the number of objects in cluster 
s, i.e.

ns = ∑δsi,s
.

N

i=1
 Equation 5

The variable cs is the internal correlation of the sth cluster, denoted by:

cs = ∑  ∑ Ci,jδsi,s
δsj,s

.
N N

i=1 j=1  Equation 6

The variable Ci,j is the Pearson correlation coefficient of the data, 
denoted by:

Ci,j =
xi xj

|| xi
2 |||| xj

2 ||  . Equation 7

Research Article High-speed market clustering
Page 2 of 9

http://www.sajs.co.za


3South African Journal of Science  
http://www.sajs.co.za

Volume 112 | Number 1/2 
January/February 2016

The maximum likelihood of structure S can be written as 
P(G*,S|xi) ∞ expDL(S) (see Sornette19), where the resulting likelihood 
function per feature Lc is denoted by:

Lc(S)= log +(ns – 1) log
ns ns

2 – ns

cs
ns

2 – css:ns>1

1
2

∑
.  Equation 8

From Equation 8, it follows that Lc=0 for clusters of objects that are 
uncorrelated, i.e. where g*

s=0 or cs= ns or when the objects are grouped 
in singleton clusters for all the cluster indexes (ns=1). Equation 8 
illustrates that the resulting maximum likelihood function for S depends 
on the Pearson correlation coefficient Ci,j and hence exhibits the following 
advantages in comparison to conventional clustering methods:

• It is unsupervised: The optimal number of clusters is unknown a 
priori and not fixed at the beginning

• The interpretation of results is transparent in terms of the model, 
namely Equation 2.

Giada and Marsili11 propose that maxs Lc(S) provides a measure of 
structure inherent in the cluster configuration represented by the set 
S={s1,...,sn}. The higher the value, the more pronounced the structure.

Parallel genetic algorithms
In order to localise clusters of normalised stock returns in financial data, 
Giada and Marsili made use of a simulated annealing algorithm,11,17 with 
–Lc as the cost function for their application on real-world data sets to 
substantiate their approach. This simulated annealing algorithm was 
then compared to other clustering algorithms, such as K-means, single 
linkage, centroid linkage, average linkage, merging and deterministic 
maximisation.11 The technique was successfully applied to South 
African financial data by Mbambiso20, using a serial implementation of a 
simulated annealing algorithm20,21.

Simulated annealing and deterministic maximisation provided acceptable 
approximations to the maximum likelihood structure, but were inherently 
computationally expensive. We promote the use of PGAs as a viable 
approach to approximate the maximum likelihood structure. Lc will be 
used as the fitness function and a PGA algorithm will be used to find 
the maximum for Lc, in order to efficiently isolate clusters in correlated 
financial data.

GA principle and genetic operators
One of the key advantages of GAs is that they are conceptually simple. 
The core algorithm can be summarised into the following steps: (1) 
initialise population, (2) evolve individuals, (3) evaluate fitness and 
(4) select individuals to survive to the next generation. GAs exhibit 
the trait of broad applicability,22 as they can be applied to any problem 
whose solution domain can be quantified by a function which needs to 
be optimised. 

Specific genetic operators are applied to the parents, in the process of 
reproduction, which then give rise to offspring. The genetic operators 
can be classified as follows:

Selection: The purpose of selection is to isolate fitter individuals in the 
population and allow them to propagate in order to give rise to new 
offspring with higher fitness values. We implemented the stochastic 
universal sampling selection operator, in which individuals are mapped 
to contiguous segments on a line in proportion to their fitness values.23 
Individuals are then selected by sampling the line at uniformly spaced 
intervals. Although fitter individuals have a higher probability of selection, 
this technique improves the chances that weaker individuals will be 
selected, allowing diversity to enter the population and reducing the 
probability of convergence to a local optimum.

Crossover: Crossover is the process of mating two individuals, with 
the expectation that they can produce a fitter offspring.22 The crossover 
genetic operation involves the selection of random loci to mark a 
cross site within the two parent chromosomes, copying the genes to 

the offspring. A bespoke knowledge-based crossover operator13 was 
developed for our implementation, in order to incorporate domain 
knowledge and improve the rate of convergence.

Mutation: Mutation is the key driver of diversity in the candidate solution 
set or search space.22 It is usually applied after crossover and aims to 
ensure that genetic information is randomly distributed, in order to avoid 
convergence to local minima. It introduces new genetic structures in 
the population by randomly modifying some of its building blocks and 
enables the algorithm to traverse the search space globally.

Elitism: Coley24 states that fitness-proportional selection does not 
necessarily favour the selection of any particular individual, even if it is 
the fittest. Thus, the fittest individuals may not survive an evolutionary 
cycle. Elitism is the process of preserving the fittest individuals by direct 
promotion to the next generation, without any genetic transformations 
due to crossover or mutation.22 

Replacement: Replacement is the last stage of any evolution cycle, in 
which the algorithm replaces old members of the current population 
with new members.22 This mechanism ensures that the population size 
remains constant, while the weakest individuals in each generation 
are dropped.

Although GAs are very effective for solving complex problems, this 
positive trait can unfortunately be offset by long execution times caused by 
the traversal of the search space. GAs lend themselves to parallelisation, 
provided the fitness values can be determined independently for each 
of the candidate solutions. While a number of schemes have been 
proposed in the literature to achieve this parallelisation,8,22,25 we have 
chosen to implement the master-slave model.

Master-slave parallelisation
Master-slave PGAs, also denoted as global PGAs, involve a single 
population, distributed amongst multiple processing units for determination 
of fitness values and the consequent application of genetic operators. They 
allow for computation on shared-memory processing entities or any type 
of distributed system topology, for example grid computing.8

Ismail25 provides a summary of the key features of the master-slave 
PGA: the algorithm uses a single population (stored by the master) and 
the fitness evaluation of all of the individuals is performed in parallel 
(by the slaves). Communication occurs only as each slave receives 
an individual (or subset of individuals) to evaluate and when the slaves 
return the fitness values, sometimes after mutation has been applied 
with the given probability. The particular algorithm implemented in this 
paper is synchronous, i.e. the master waits until it has received the 
fitness values for all individuals in the population before proceeding with 
selection and mutation. The synchronous master-slave PGA thus has the 
same properties as a conventional GA, except evaluation of the fitness 
of the population is achieved at a faster rate. The algorithm is relatively 
easy to implement and a significant speed-up can be expected if the 
communications cost does not dominate the computation cost. The 
whole process has to wait for the slowest processor to finish its fitness 
evaluations until the selection operator can be applied.

A number of authors have used the Message Parsing Interface (MPI) 
paradigm to implement a master-slave PGA. Digalakis and Margaritis26 
implement a synchronous MPI PGA and shared-memory PGA, whereby 
fitness computations are parallelised and other genetic operators are 
applied by the master node only. They demonstrate a computation 
speed-up which scales linearly with the number of processors for large 
population sizes. Zhang et al.27 use a centralised control island model 
to concurrently apply genetic operators to sub-groups, with a bespoke 
migration strategy using elite individuals from sub-groups. Nan et al.28 
used the MATLAB parallel computing and distributed computing toolboxes 
to develop a master-slave PGA, demonstrating its efficacy on the image 
registration problem when using a cluster computing configuration. 

For our implementation, we made use of the Nvidia CUDA platform to 
achieve massive parallelism by utilising the graphical processing unit 
(GPU) streaming multiprocessors (SM) as slaves, and the central 
processing unit (CPU) as master.
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Computational platform and implementation
CUDA is Nvidia’s platform for massively parallel high-performance 
computing on the Nvidia GPUs. At its core are three key abstractions: a 
hierarchy of thread groups, shared memories and barrier synchronisation. 
Full details on the execution environment, thread hierarchy, memory 
hierarchy and thread synchronisation schemes have been omitted 
here, but we refer the reader to Nvidia technical documentation29,30 for a 
comprehensive discussion.

Specific computational environment
The CUDA algorithm and the respective testing tools were developed 
using Microsoft Visual Studio 2012 Professional, with the Nvidia Nsight 
extension for CUDA-C projects. The configurations shown in Table 1 were 
tested to determine the versatility of the CUDA clustering algorithms.

We had the opportunity to test two candidate graphics cards for the 
algorithm implementation: the Nvidia GTX Titan Black and the Nvidia 
TESLA C2050. Both cards offer double-precision calculations and 
a similar number of CUDA cores and TFLOPS (tera floating point 
operations per second); however, the GTX card is significantly cheaper 
than the TESLA card. The primary reason for this cost difference is the 
use of ECC (error check and correction) memory on the TESLA cards, 
where extra memory bits are present to detect and fix memory errors.31 
The presence of ECC memory ensures consistency in results generated 
from the TESLA card, which is critical for rigorous scientific computing. 
In further investigations, we will explore the consistency of the solution 
quality generated from the GTX card, and whether the resultant error is 
small enough to justify the cost saving compared to the TESLA card.

Implementation
The following objectives were considered in this study: (1) to investigate 
and tune the behaviour of the PGA implementation using a pre-
defined set of 40 simulated stocks, featuring four distinct and disjoint 
clusters, (2) to identify clusters in a real-world data set, namely high-
frequency price evolutions of stocks and (3) to test the efficiency of the 
GPU environment.

Representation
We used integer-based encoding for the representation of individuals in 
the GA:

Individual = S = {s1, s2 ,..., si –1 , si ,..., sN} Equation 9

where si=1,...,K and i=1,...,N. Here si is the cluster to which object 
i belongs. In terms of the terminology pertaining to GAs, the ith gene 
denotes the cluster to which the ith object or asset belongs. The numbers 
of objects or assets is N; thus to permit the possibility of an all-singleton 
configuration, we let K=N. This representation was implemented by 
Gebbie et al.21 in their serial GA and was adopted in this research.

Fitness function
The Giada and Marsili maximum log-likelihood function Lc, as shown 
in Equation 8, was used as the fitness function. This function is used 
to determine whether the cluster configuration represents the inherent 
structure of the data set, i.e. it is used to detect if the GA converges to 
the fittest individual, corresponding to the cluster configuration which 
best explains the structure amongst correlated assets or objects in the 
data set.

Master-slave implementation
The unparallelised MATLAB GA implementation of the clustering 
technique by Gebbie et al.21 served as a starting point. In order to 
maximise the performance of the GA, the application of genetic operators 
and evaluation of the fitness function were parallelised for the CUDA 
framework.13 A summarised exposition is presented here.

Emphasis was placed on outsourcing as much of the GA execution 
to the GPU and using GPU memory as extensively as possible.32 The 
master-slave PGA uses a single population, for which evaluation of 
the individuals and successive application of genetic operators are 
conducted in parallel. The global parallelisation model does not predicate 
anything about the underlying computer architecture, so it can be 
implemented efficiently on a shared-memory and distributed-memory 
model platform.22 Delegating these tasks to the GPU and making 
extensive use of GPU memory minimises the data transfers between the 
host and device. These transfers have a significantly lower bandwidth 
than data transfers between shared or global memory and the kernel 
executing on the GPU. The algorithm in Gebbie et al.21 was modified 
to maximise the performance of the master-slave PGA and to have a 
clear distinction between the master node (CPU) and slave nodes (GPU 
streaming multiprocessors). The CPU controls the evolutionary process 
by issuing the commands for the GA operations to be performed by 

Table 1:  Development, testing and benchmarking environments

Environment Configuration Framework

WINDOWS_GTX_CUDA

Windows 7 Professional Service Pack 1 (64-bit)

Core i7-4770K CPU@3.50 GHz x 8, 32 GB RAM

Nvidia GTX Titan Black with 6 GB RAM, CC: 3.0, SM: 3.5

CUDA-C 5.5 (parallel)

WINDOWS_GTX_MATLAB

Windows 7 Professional Service Pack 1 (64-bit)

Core i7-4770K CPU@3.50 GHz x 8, 32 GB RAM

Nvidia GTX Titan Black with 6 GB RAM, CC: 3.0, SM: 3.5

MATLAB 2013a (serial)

WINDOWS_TESLA_CUDA

Windows 7 Professional Service Pack 1 (64-bit)

Intel Core i7-X980 CPU@3.33 GHz x 12, 24 GB RAM

Nvidia TESLA C2050 with 2.5 GB RAM, CC: 2.0, SM: 2.0

CUDA-C 5.5 (parallel)

WINDOWS_TESLA_MATLAB

Windows 7 Professional Service Pack 1 (64-bit)

Intel Core i7-X980 CPU@3.33 GHz x 12, 24 GB RAM

Nvidia TESLA C2050 with 2.5 GB RAM, CC: 2.0, SM: 2.0

MATLAB 2013a (serial)

CPU, central processing unit; RAM, random access memory; CC, compute capability; SM, streaming multiprocessor.
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the GPU streaming multiprocessors. The pseudo-code for the algorithm 
implemented is shown in Algorithm 1.

Algorithm 1:  Master-slave parallel genetic algorithm for cluster identification

Initialise ecosystem for evolution

Size the thread blocks and grid to achieve greatest parallelisation

ON GPU: Create initial population

while TRUE do

ON GPU: Evaluate fitness of all individuals

ON GPU: Evaluate state and statistics

ON GPU: Determine if termination criteria are met

if YES then

Terminate ALGO; exit while loop;

else

Continue

end if

ON GPU: Isolate fittest individuals

ON GPU: Apply elitism

ON GPU: Apply scaling

ON GPU: Apply genetic operator: selection 

ON GPU: Apply genetic operator: crossover 

ON GPU: Apply genetic operator: mutation

ON GPU: Apply replacement (new generation created)

end while

Report on results

Clean-up (de-allocate memory on GPU/CPU; release device)

GPU, graphics processing unit; CPU, central processing unit.

To achieve data parallelism and make use of the CUDA thread hier-
archy, we mapped individual genes onto a two-dimensional grid. Using 
the representation shown in Equation 9, assuming a population of 400 
individuals and 18 stocks:

Individual1 = {1,2,4,5,7...,6}

Individual2 = {9,2,1,1,1...,2}

Individual3 = {3,1,3,4,6...,2}

Individual400 = {8,1,9,8,7...,3}

would be mapped to grid cells, as illustrated in Figure 1. The data grid 
cells are mapped to threads, where each thread executes a kernel 
processing the data cell at the respective xy-coordinate.

Given the hardware used in this investigation (see Table 1), Table 2 
outlines the restrictions on the permissible stock universe and population 
sizes imposed by the chosen mapping of individual genes to threads. A 
thread block dimension of 32 is chosen for larger problems, because 
this number ensures that the permissible population size is larger than 
the number of stocks to cluster.

We note that the efficiency of the algorithm may be compromised near 
the physical limits outlined in Table 2, as the CUDA memory hierarchy 
would force threads to access high-latency global memory banks more 
often. However, for the particular domain problem we are considering 
here, the Johannesburg Stock Exchange consists of about 400 listed 
companies on its main board, which represents an upper limit on the 
number of stocks of interest for local cluster analysis. This is well within 
the physical limits of the algorithm, while still providing scope to extend 
the application to multiple markets. 

The details on the full implementation, as well as specific choices 
regarding initialisation, block sizes and threads per block, are given 
in Cieslakiewicz13.

Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 ... Individual 400

GRID

Block (0,0) Block (1,0) Block (2,0) Block (3,0) Block (4,0) ... Block (399,0)

Stock 1 1 9 3 2 5 8

Block (0,1) Block (1,1) Block (2,1) Block (3,1) Block (4,1) ... Block (399,1)

Stock 2 2 2 1 1 7 1

Block (0,2) Block (1,2) Block(2,2) Block (3,2) Block (4,2) ... Block (399,2)

Stock 3 4 1 3 3 3 9

Block (0,3) Block (1, 3) Block (2,3) Block (3,3) Block (4,3) ... Block (399,3)

Stock 4 5 1 4 3 4 8

Block (0,4) Block (1,4) Block (2,4) Block (3,4) Block (4,4) ... Block (399,4)

Stock 5 7 1 6 7 8 7

Block (0,17) Block (1,17) Block (2,17) Block (3,17) Block (4,17) ... Block (399,17)

Stock 18 6 2 2 1 2 3

Figure 1:  Mapping of individuals onto the Compute Unified Device Architecture (CUDA) thread hierarchy.
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Key implementation challenges
A key challenge in CUDA programming is adapting to the single-program 
multiple-data (SPMD) paradigm, where multiple instances of a single 
program use unique offsets to manipulate portions of a block of data.33 
This architecture suits data parallelism, whereas task parallelism 
requires a special effort. In addition, because each warp (a group of 32 
threads) is executed on a single SPMD processor, divergent threads in a 
warp can severely impact performance. In order to exploit all processing 
elements in the multi-processor, a single instruction is used to process 
data from each thread. However, if one thread needs to execute different 
instructions as a result of a conditional divergence, all other threads must 
effectively wait until the divergent thread re-joins them. Thus, divergence 
forces sequential thread execution, negating a large benefit provided by 
SPMD processing.

The CUDA memory hierarchy contains numerous shared memory banks 
which act as a common data cache for threads in a thread block. In 
order to achieve full throughput, each thread must access a distinct 
bank and avoid bank conflicts, which would result in additional memory 
requests and reduce efficiency. In our implementation, bank conflicts 
were avoided by using padding, in which shared memory is padded 
with an extra element such that neighbouring elements are stored in 
different banks.34

CUDA provides a simple and efficient mechanism for thread synchroni-
sation within a thread block via the __syncthreads() barrier function; 
however, inter-block communication is not directly supported during the 
execution of a kernel. Given that the genetic operators can be applied 
only once the entire population fitness is calculated, it is necessary to 
synchronise thread blocks assigned to the fitness computation operation. 
We implemented the CPU implicit synchronisation scheme.35,36 As kernel 
launches are asynchronous, successive kernel launches are pipelined 
and thus the executions are implicitly synchronised with the previous 
launch, with the exception of the first kernel launch. Given the latency 
incurred on calls between the CPU and GPU, and the consequent drag 
on performance, GPU synchronisation schemes were explored which 
achieve the required inter-block communication. In particular, GPU 
simple synchronisation, GPU tree-based synchronisation and GPU lock-
free synchronisation were considered.35 

Ultimately, the GPU synchronisation schemes were too restrictive for our 
particular problem, because the number of thread blocks would have an 
upper bound equal to the number of SMs on the GPU card. If the number 
of thread blocks is larger than the number of SMs on the card, execution 
may deadlock. This deadlock could be caused by the warp scheduling 
behaviour of the GPU, whereby active thread blocks resident on a SM 
may remain in a busy waiting state, waiting for unscheduled thread 
blocks to reach the synchronisation point. While this scheme may be 
more efficient for smaller problems, we chose the CPU synchronisation 
scheme in the interest of relative scalability. 

Data pre-processing
To generate the N-stock correlation matrices to demonstrate the 
viability of the algorithm on real-world test data, data correlations were 
computed on data, where missing data was addressed using zero-
order hold interpolation.37 The market mode was removed using the 

method suggested by Giada and Marsili17 using a recursive averaging 
algorithm. A covariance matrix was then computed using an iterative 
online exponentially weighted moving average filter with a default 
forgetting factor of λ=0.98. The correlation matrix was computed 
from the covariance matrix and was cleaned using random matrix 
theory methods. In particular, Gaussian noise effects were reduced 
by eliminating eigenvalues in the Wishart range in a trace-preserving 
manner.37 This process enhanced the clusters and improved the stability 
of estimated sequence of correlation matrices.

Data post-processing
Computed cluster configurations are read from the CUDA output flat 
file. Successively, an adjacency matrix is constructed by using data 
values from the correlation matrix in conjunction with computed cluster 
configuration of the respective data set. The adjacency matrix is then 
used to construct a disjoint set of minimal spanning trees (MSTs), with 
each tree capturing the inter-connectedness of each cluster. Each MST 
exhibits ns – 1 edges, connecting the ns stocks of the cluster in such a 
manner that the sum of the weights of the edges is a minimum. Kruskal’s 
algorithm was used to generate the MSTs, which depict the linkages 
between highly correlated stocks, providing a graphical visualisation of 
the resultant set of disjoint clusters.38

Data and results
Data
In this investigation we used two sets of data: the training set and the test 
set. The training set consisted of a simulated time series of 40 stocks 
which exhibit known distinct, disjoint clusters. The recovery of these 
induced clusters was used to tune the PGA parameters. The test set 
consisted of actual stock quoted midprice ticks aggregated into 3-min 
bars from 28 September 2012 to 10 October 2012, viz. approximately 
1800 data points for each stock. Stocks chosen represent the 18 most 
liquid stocks on the Johannesburg Stock Exchange for that period, 
according to traded volumes. For both data sets, correlation matrices 
were constructed from the time series data to serve as inputs for the 
clustering algorithm. The test set results below show the summary 
statistics from a set of 1760 correlation matrices of 18 Johannesburg 
Stock Exchange stocks.

Results
We show a sample set of results here. Further discussion regarding 
aspects of the analysis are given in Cieslakiewicz13.

Optimal algorithm settings
Various investigations were undertaken to identify optimal adjoint 
parameters for the PGA. In each case, the algorithm was successively 
applied to the training set, with known disjoint clusters. Settings were 
varied until the rate of convergence was maximised. Once the optimal 
value for each adjoint parameter had been determined from the training 
set, the optimal algorithm configuration was deployed on the test set. 
In further investigations, we will study the effect of various adjoint 
parameter choices on the rate of convergence and algorithm efficiency 
for varying stock universe sizes.

Table 2:  Restrictions on the number of stocks and population size 

Graphics card
Compute 
capability

Number of 
streaming 

multiprocessors

Maximum threads 
/ thread block

Thread block 
dimension

Maximum 
thread blocks / 
multiprocessor

Maximum number 
of stocks

Maximum 
population size

Nvidia GTX 
Titan Black

3.5 15 1024 32 16 3840 17 472

Nvidia Tesla 
C2050

2.0 14 1024 32 8 3584 18 720

For the Tesla card, the maximum number of stocks = (14) * (1024/32) * 8 = 3584 and maximum population size = (65 535 / (3584/32)) * 32 = 18 720.
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The optimal configuration shown in Table 3 for the PGA was deployed on 
the test set, given a population size of 1000.

Table 3:  Optimal adjoint parameter values for given training set

Adjoint parameter Value

Number of generations 400

Crossover probability (Pc ) 0.9

Mutation probability (Pm ) 0.1

Error tolerance 0.00001

Stall generations (Gstall ) 50

Elite size 10

Crossover operator Knowledge-based operator

Mutation operator Random replacement

Knowledge-based crossover probability 0.9

Benchmark timing results
Table 4 illustrates the efficiency of the CUDA PGA implementation, 
compared to the MATLAB serial GA. Direct comparison between the 
MATLAB serial GA and CUDA PGA may be biased by the fundamental 
architecture differences of the two platforms. Nevertheless, we 
immediately observe a significant 10–15 times performance improvement 
for the test set cluster analysis run. This improvement can be attributed to 
the utilisation of a parallel computation platform, a novel genetic operator 
and the algorithm tuning techniques employed. On the GTX platform, the 
CUDA PGA takes 0.80 s to identify residual clusters inherent in a single 
correlation matrix of 18 real-world stocks, demonstrating its potential as 
a near-real-time risk assessment tool. The outperformance of the GTX 
card is likely explained by the card’s relative faster core speed, memory 
speed, larger memory and memory bandwidth compared to the TESLA 
card. Although this may justify the use of the more cost-effective GTX 
card, it is not clear that this performance differential will persist as the 
size of the stock universe increases, or whether the GTX card preserves 
solution quality. We note that the scale of the performance improvement 
over the serial algorithm is not as important as the absolute result of 
obtaining sub-second computation time. The CUDA PGA thus serves 
the objective of near-real-time risk assessment, whereby interesting 
phenomena from emerging stock cluster behaviour can be identified and 
acted upon to mitigate adverse scenarios. The scalability of these results 
should be investigated in further research; in particular, the impact of 
the CUDA memory hierarchy on computation time as global memory 
accesses increase should be investigated.

In these results we assume correlation matrices are readily available as 
inputs for the cluster analysis algorithm. Further research to investigate 
computationally efficient correlation estimation for high-frequency 
data is a separate problem in the objective of developing a robust and 
practical near-real-time risk assessment tool.

Although the results are promising, it is not clear that the SPMD 
architecture used by CUDA is well suited for the particular problem 
considered. The required data dependence across thread blocks 

restricts the assignment of population genes to threads and results in 
a large number of synchronisation calls to ensure consistency of each 
generation. An MPI island model with distributed fitness computation 
and controlled migration is perhaps a more well-posed solution39; 
however, it is important to consider the cost of the set-up required to 
achieve the equivalent speed-up provided by CUDA. This cost should be 
explored in further research.

Interpretation of real-world test set results
In this section, we illustrate a sample of the resultant cluster con-
figurations which were generated from our model, represented 
graphically as MSTs.13,20 This illustration serves as a particular domain 
application which provides an example of resulting cluster configurations 
which have meaningful interpretations. The thickness of the edges 
connecting nodes gives an indication of the strength of the correlation 
between stocks.

The South African equity market is often characterised by diverging 
behaviour between financial/industrial stocks and resource stocks and 
strong coupling with global market trends.

SLM

ASA

SBK SHF GFI OML
KIO NPN

IMPFSR

AGLSOLBIL

Figure 2:  Morning trading residual clusters (on 28 September 2012 
at 09:03).

In Figure 2, we see four distinct clusters emerge as a result of the early 
morning trading patterns, just after market open: most notably, a six-
node financial/industrial cluster (SLM, SBK, ASA, SHF, GFI, OML) and 
a three-node resource cluster (BIL, SOL, AGL). At face value, these 
configurations would be expected; however, we notice that GFI, a gold 
mining company, appears in the financial cluster and FSR, a banking 
company, does not appear in the financial cluster. These examples are of 
short-term decoupling behaviour of individual stocks as a consequence 
of idiosyncratic factors.

SAB

IMP

BIL
CFR

AGL

SOL

ANG

NPN FSR

MTN

Figure 3:  Morning trading (after UK market open) residual clusters (on 
28 September 2012 at 10:21).

Table 4:  Benchmark computational speed results

Environment Framework Benchmark Median time (s) Minimum time (s) Maximum time (s)

WINDOWS_GTX_CUDA CUDA-C 5.5 18-stock test set (optimal configuration) 0.80 0.73 3.17

WINDOWS_GTX_MATLAB Serial 18-stock test set (optimal configuration) 7.77 6.72 13.27

WINDOWS_TESLA_CUDA CUDA-C 5.5 18-stock test set (optimal configuration) 1.39 1.36 5.51

WINDOWS_TESLA_MATLAB Serial 18-stock test set (optimal configuration) 15.91 13.41 26.22
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Figure 3 illustrates the effect of the UK market open on local trading 
patterns. We see a clear emergence of a single large cluster, indicating 
that trading activity by UK investors has a significant impact on the local 
market. When examining the large single cluster, all of the stocks have 
either primary or secondary listings in the USA and UK. In particular, 
SAB and ANG have secondary listings on the London Stock Exchange, 
whereas BIL and AGL have primary listings on the London Stock 
Exchange.40 It is also unusual to see such a strong link (correlation) 
between AGL, a mining company, and CFR, a luxury goods company. 
This correlation may be evidence that significant UK trading in these two 
stocks can cause a short-term elevated correlation, which may not be 
meaningful or sustainable.

NPN

MTN ASA

IMP

CFR FSR ANG

BILSOLSABAGL

Figure 4:  Midday trading residual clusters (on 28 September 2012 at 
12:21).

In Figure 4, we consider midday trading patterns. We see that the 
cluster ing effect from UK trading has dissipated and multiple disjoint 
clusters have emerged. CFR has decoupled from AGL in the 2 h after 
the UK market open, as we might expect. We see a four-node financial/
industrial cluster (NPN, MTN, ASA, IMP) and a four-node resource 
cluster (AGL, SAB, SOL, BIL); IMP, a mining company, appears in the 
financial/industrial cluster.

OML SBK

SHF

FSR

CFR

ANGGFISLM

ASA KIOMTNAMS

Figure 5:  Afternoon trading (after US market open) residual clusters (on 
28 September 2012 at 15:33).

Figure 5 illustrates the effect of the US market open on local trading 
patterns. Similar to what we observed in Figure 3, we see the emergence 
of a large single cluster, driven by elevated short-term correlations 
amongst constituent stocks. This observation provides further evidence 
that significant trading by foreign investors in local stocks can cause a 
material impact on stock market dynamics.

Conclusion
In this paper, we have verified that the Giada and Marsili11 likelihood 
function is a viable, parallelisable approach for isolating residual 
clusters in data sets on a GPU platform. Key advantages of this function 
compared with conventional clustering methods are that: (1) the method 
is unsupervised and (2) the interpretation of results is transparent in 
terms of the model.

The implementation of the master-slave PGA showed that efficiency 
depends on various algorithm settings. The type of mutation operator 
utilised has a significant effect on the algorithm’s efficiency to isolate 
the optimal solution in the search space, whilst the other adjoint 
parameter settings primarily impact the convergence rate. According to 
the benchmark test results, the CUDA PGA implementation runs 10–15 
times faster than the serial GA implementation in MATLAB for detecting 

clusters in 18-stock real-world correlation matrices. Specifically, when 
using the Nvidia GTX Titan Black card, clusters are recovered in sub-
second speed, demonstrating the efficiency of the algorithm.

Provided intraday correlation matrices can be estimated from high 
frequency data, this significantly reduced computation time suggests 
intraday cluster identification can be practical, for near-real-time risk 
assessment for financial practitioners.

Detecting cluster anomalies and measuring persistence of effects may 
provide financial practitioners with useful information to support local 
trading strategies. From the sample results shown, it is clear that intraday 
financial market evolution is dynamic, reflecting effects which are both 
exogenous and endogenous. The ability of the clustering algorithm to 
capture interpretable and meaningful characteristics of the system 
dynamics, and the generality of its construction, suggests the method 
can be successful in other domains.

Further investigations will include adjoint parameter tuning and 
performance scalability for varying stock universe sizes and cluster 
types, quantifying the variability of solution quality on the GTX architecture 
as a result of non-ECC memory usage and the investigation of alternative 
cost-effective parallelisation schemes. Given the SPMD architecture 
used by CUDA, the required data dependence across thread blocks 
restricts the assignment of population genes to threads and results in 
a large number of synchronisation calls to ensure consistency of each 
generation. An MPI island model with distributed fitness computation and 
controlled migration is perhaps a more well-posed solution to explore39; 
however, the cost of the set-up required to achieve the equivalent speed-
up provided by CUDA should be justified.
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