
1South African Journal of Science
http://www.sajs.co.za

Volume 112 | Number 1/2
January/February 2016

Research Article High-speed market clustering
Page 1 of 9

© 2016. The Author(s).
Published under a Creative
Commons Attribution Licence.

High-speed detection of emergent market clustering
via an unsupervised parallel genetic algorithmAUTHORS:

Dieter Hendricks1

Tim Gebbie1

Diane Wilcox1

AFFILIATION:
1School of Computer Science
and Applied Mathematics,
University of the Witwatersrand,
Johannesburg, South Africa

CORRESPONDENCE TO:
Dieter Hendricks

EMAIL:
dieter.hendricks@students.wits.
ac.za

POSTAL ADDRESS:
School of Computer Science and
Applied Mathematics, University
of the Witwatersrand, Private
Bag, Wits 2050, South Africa

DATES:
Received: 01 Oct. 2014

Revised: 12 May 2015

Accepted: 24 June 2015

KEYWORDS:
unsupervised clustering; genetic
algorithms; parallel algorithms;
financial data processing;
maximum likelihood clustering

HOW TO CITE:
Hendricks D, Gebbie T, Wilcox
D. High-speed detection of
emergent market clustering
via an unsupervised parallel
genetic algorithm. S Afr J
Sci. 2016;112(1/2), Art.
#2014-0340, 9 pages.
http://dx.doi.org/10.17159/
sajs.2016/20140340

We implement a master-slave parallel genetic algorithm with a bespoke log-likelihood fitness function to
identify emergent clusters within price evolutions. We use graphics processing units (GPUs) to implement
a parallel genetic algorithm and visualise the results using disjoint minimal spanning trees. We demonstrate
that our GPU parallel genetic algorithm, implemented on a commercially available general purpose GPU, is
able to recover stock clusters in sub-second speed, based on a subset of stocks in the South African market.
This approach represents a pragmatic choice for low-cost, scalable parallel computing and is significantly
faster than a prototype serial implementation in an optimised C-based fourth-generation programming
language, although the results are not directly comparable because of compiler differences. Combined with
fast online intraday correlation matrix estimation from high frequency data for cluster identification, the
proposed implementation offers cost-effective, near-real-time risk assessment for financial practitioners.

Introduction
Advances in technology underpinning multiple domains have increased the capacity to generate and store data and
metadata relating to domain processes. The field of data science is continuously evolving to meet the challenge
of gleaning insights from these large data sets, with extensive research in exact algorithms, heuristics and meta-
heuristics for solving combinatorial optimisation problems. The primary advantage of using exact methods is the
guarantee of finding the global optimum for the problem. However, a disadvantage when solving complex (NP-hard)
problems is the exponential growth of the execution time proportional to the problem instance size.1 Heuristics tend
to be efficient, but solution quality cannot be guaranteed and techniques often are not versatile.2 Meta-heuristics
attempt to consolidate these two approaches and deliver an acceptable solution in a reasonable time frame. A large
number of meta-heuristics designed for solving complex problems exist in the literature and the genetic algorithm
(GA) has emerged as a prominent technique, using intensive global search heuristics that explore a search space
intelligently to solve optimisation problems.

Although the algorithms must traverse large spaces, the computationally intensive calculations can be performed
independently. Compute Unified Device Architecture (CUDA) is Nvidia’s parallel computing platform which is well
suited to many computational tasks, particularly those for which data parallelism is possible. Implementing a GA to
perform cluster analysis on vast data sets using this platform allows one to mine through the data relatively quickly
and at a fraction of the cost of those of large data centres or computational grids.

A number of authors have considered parallel architectures to accelerate GAs.3-10 While the work of Kromer et al.7 is
conceptually similar to the implementation proposed in this paper, a key difference is our choice of fitness function
for the clustering scheme.

Giada and Marsili 11 propose an unsupervised, parameter-free approach to finding data clusters, based on the
maximum likelihood principle. They derive a log-likelihood function, where a given cluster configuration can be
assessed to determine whether it represents the inherent structure for the data set: cluster configurations which
approach the maximum log-likelihood are better representatives of the data structure. This log-likelihood function
is thus a natural candidate for the fitness function in a GA implementation, where the population continually
evolves to produce a cluster configuration which maximises the log-likelihood. The optimal number of clusters
is a free parameter, unlike in traditional techniques where the number of clusters needs to be specified a priori.
While unsupervised approaches have been considered (see Omran et al.12 and references therein), the advantage
of the Giada and Marsili approach is that it has a natural interpretation for clustering in the application domain
explored here.

Monitoring intraday clustering of financial instruments allows one to better understand market characteristics and
systemic risks. While GAs provide a versatile methodology for identifying such clusters, serial implementations are
computationally intensive and can take a long time to converge to a best approximation. In this paper, we introduce
a maintainable and scalable master-slave parallel genetic algorithm (PGA) framework for unsupervised cluster
analysis on the CUDA platform, which is able to detect clusters using the Giada and Marsili likelihood function.
Applying the proposed cluster analysis approach and examining the clustering behaviour of financial instruments,
offers a unique perspective to monitor the intraday characteristics of the stock market and the detection of
structural changes in near real time. The novel implementation presented in this paper builds on the contribution
of Cieslakiewicz13. While we provide an overview and specific use-case for the algorithm in this paper, we also are
investigating aspects of adjoint parameter tuning, performance scalability and the impact on solution quality for
varying stock universe sizes and cluster types.

Cluster analysis
Cluster analysis groups objects according to metadata describing the objects or their associations.14 The goal
is to ensure that objects within a group exhibit similar characteristics and are unrelated to objects in other
groups. The greater the homogeneity within a group, and the greater the heterogeneity between groups, the more

http://www.sajs.co.za
http://orcid.org/0000-0003-4523-6386
http://orcid.org/0000-0002-4061-2621
http://orcid.org/0000-0003-1832-3601
mailto:dieter.hendricks@students.wits.ac.za
mailto:dieter.hendricks@students.wits.ac.za
http://dx.doi.org/10.17159/sajs.2016/20140340
http://dx.doi.org/10.17159/sajs.2016/20140340

2South African Journal of Science
http://www.sajs.co.za

Volume 112 | Number 1/2
January/February 2016

pronounced the clustering. In order to isolate clusters of similar objects,
one needs to utilise a data clustering approach that will recover inherent
structures efficiently.

The correlation measure of similarity
The correlation measure is an approach to standardise data by using the
statistical interdependence between data points. Correlation indicates
the direction (positive or negative) and the degree or strength of the
relationship between two data points. The most common correlation
coefficient which measures the relationship between data points is
the Pearson correlation coefficient, which is sensitive only to a linear
relationship between points. The Pearson correlation is +1 in the case of
a perfect positive linear relationship, -1 in the case of a perfect negative
linear relationship and some value between -1 and +1 in all other cases,
with values close to 0 signalling negligible interdependence.

Clustering procedures
Any specific clustering procedure entails optimising some kind of
criterion, such as minimising the within-cluster variance or maximising
the distance between the objects or clusters.

Cluster analysis based on the maximum likelihood principle
Maximum likelihood estimation is a method of estimating the parameters
of a statistical model. Data clustering on the other hand deals with the
problem of classifying or categorising a set of N objects or clusters, so that
the objects within a group or cluster are more similar than objects belonging
to different groups. If each object is identified by D measurements, then
an object can be represented as a tuple, xi = (xi

(1),..., xi
(D)), i=1,...,N in a

D-dimensional space. Data clustering is used to identify clusters as more
densely populated regions in this vector space. Thus, a configuration of
clusters is represented by a set S={s1,...,sN} of integer labels, where
si denotes the cluster to which object i belongs and N is the number of
objects11 (if si=sj=s, then object i and object j reside in the same cluster),
and if si takes on values from 1 to M and M=N, then each cluster is a
singleton cluster constituting one object only.

Analogy to the Potts model
One can apply super-paramagnetic ordering of a q-state Potts model
directly for cluster identification.15 In a market Potts model, each stock
can take on q-states and each state can be represented by a cluster
of similar stocks.15-17 Cluster membership is indicative of some
commonality among the cluster members. Each stock has a component
of its dynamics as a function of the state it is in and a component of its
dynamics influenced by stock specific noise. In addition, there may be
global couplings that influence all the stocks, i.e. the external field that
represents a market mode.

In the super-paramagnetic clustering approach, the cost function can
be considered as a Hamiltonian function whose low energy states
correspond to cluster configurations that are most compatible with
the data sample. Structures are then identified with configurations
S = {si}

N
i=1 for the cluster indices si which represent the cluster to which

the ith object belongs. This allows one to interpret si as a Potts spin in the
Potts model Hamiltonian with Jij decreasing with the distance between
objects.15,16 The Hamiltonian takes on the form:

Hg = – Jij δ (si , sj) – 1
β

si ,sj⋲S i

hi
M Si ,∑ ∑

 Equation 1

where the spins si can take on q-states and the external magnetic fields
are given by hi

M. The first term represents common internal influences
and the second term represents external influences. We ignore the
second term when fitting data, as we include shared factors directly in
later sections when we discuss information and risk and the influence of
these on price changes.

In the Potts model approach, one can think of the coupling parameters
Jij as being a function of the correlation coefficient.16,17 The coupling
parameters are used to specify a distance function that decreases with
distance between objects. If all the spins are related in this way then each

pair of spins is connected by some non-vanishing coupling, Jij = Jij (cij).
In this model, the case where there is only one cluster can be thought of
as a ground state. As the system becomes more excited, it could break
up into additional clusters and each cluster would have specific Potts
magnetisations, even though net magnetisation may remain zero for
the complete system. Generically, the correlation would then be both a
function of time and temperature in order to encode both the evolution of
clusters as well as the hierarchy of clusters as a function of temperature.
In the basic approach, one is looking for the lowest energy state that fits
the data. In order to parameterise the model efficiently one can choose
to make the Noh18 ansatz and use this to develop a maximum-likelihood
approach of Giada and Marsili17 rather than explicitly solving the Potts
Hamiltonian numerically15,16.

Giada and Marsili clustering technique
Following Giada and Marsili17, we assume that price increments evolve
under Noh18 model dynamics, whereby objects belonging to the same
cluster should share a common component:

xi = gsi
ηsi

 + 1– g2
si
 εi . Equation 2

Here, xi represents the features of object i and si is the label of the cluster
to which the object belongs. The data have been normalised to have
zero mean and unit variance. εi is a vector describing the deviation of
object i from the features of cluster s and includes measurement errors,
while ηsi

 describes cluster-specific features. gs is a loading factor that
emphasises the similarity or difference between objects in cluster s. In
this research the data set refers to a set of the objects, denoting N assets
or stocks, and their features are prices across D days in the data set. The
variable i is indexing stocks or assets, whilst d is indexing days.

If gs=1, all objects with si=s are identical, whilst if gs=0, all objects are
different. The range of the cluster index is from 1 to N in order to allow
for singleton clusters of one object or asset each.

If one takes Equation 2 as a statistical hypothesis and assumes that both
ηsi

 and εs are Gaussian vectors with zero mean and unit variance, for
values of i,s=1,...,N, it is possible to compute the probability density
P({xi} | G,S) for any given set of parameters (G,S)=({gs},{si}) by
observing the data set {xi},i,s=1,...,N as a realisation of the common
component of Equation 2 as follows11:

P({xi} | G,S) = ∏ ∏ δ(xi (d)–gsi
 ηsi + 1–g2

si
εi)

D

d=1 i=1

N

. Equation 3

The variable δ is the Dirac delta function and <...> denotes the
mathematical expectation. For a given cluster structure S, the likelihood
is maximal when the parameter gS takes the values

g*
S =

cS – nS for ns >1,
for ns <1.n2

S – nS

0

 Equation 4

The quantity ns in Equation 4 denotes the number of objects in cluster
s, i.e.

ns = ∑δsi,s
.

N

i=1
 Equation 5

The variable cs is the internal correlation of the sth cluster, denoted by:

cs = ∑ ∑ Ci,jδsi,s
δsj,s

.
N N

i=1 j=1 Equation 6

The variable Ci,j is the Pearson correlation coefficient of the data,
denoted by:

Ci,j =
xi xj

|| xi
2 |||| xj

2 || . Equation 7

Research Article High-speed market clustering
Page 2 of 9

http://www.sajs.co.za

3South African Journal of Science
http://www.sajs.co.za

Volume 112 | Number 1/2
January/February 2016

The maximum likelihood of structure S can be written as
P(G*,S|xi) ∞ expDL(S) (see Sornette19), where the resulting likelihood
function per feature Lc is denoted by:

Lc(S)= log +(ns – 1) log
ns ns

2 – ns

cs
ns

2 – css:ns>1

1
2

∑
. Equation 8

From Equation 8, it follows that Lc=0 for clusters of objects that are
uncorrelated, i.e. where g*

s=0 or cs= ns or when the objects are grouped
in singleton clusters for all the cluster indexes (ns=1). Equation 8
illustrates that the resulting maximum likelihood function for S depends
on the Pearson correlation coefficient Ci,j and hence exhibits the following
advantages in comparison to conventional clustering methods:

• It is unsupervised: The optimal number of clusters is unknown a
priori and not fixed at the beginning

• The interpretation of results is transparent in terms of the model,
namely Equation 2.

Giada and Marsili11 propose that maxs Lc(S) provides a measure of
structure inherent in the cluster configuration represented by the set
S={s1,...,sn}. The higher the value, the more pronounced the structure.

Parallel genetic algorithms
In order to localise clusters of normalised stock returns in financial data,
Giada and Marsili made use of a simulated annealing algorithm,11,17 with
–Lc as the cost function for their application on real-world data sets to
substantiate their approach. This simulated annealing algorithm was
then compared to other clustering algorithms, such as K-means, single
linkage, centroid linkage, average linkage, merging and deterministic
maximisation.11 The technique was successfully applied to South
African financial data by Mbambiso20, using a serial implementation of a
simulated annealing algorithm20,21.

Simulated annealing and deterministic maximisation provided acceptable
approximations to the maximum likelihood structure, but were inherently
computationally expensive. We promote the use of PGAs as a viable
approach to approximate the maximum likelihood structure. Lc will be
used as the fitness function and a PGA algorithm will be used to find
the maximum for Lc, in order to efficiently isolate clusters in correlated
financial data.

GA principle and genetic operators
One of the key advantages of GAs is that they are conceptually simple.
The core algorithm can be summarised into the following steps: (1)
initialise population, (2) evolve individuals, (3) evaluate fitness and
(4) select individuals to survive to the next generation. GAs exhibit
the trait of broad applicability,22 as they can be applied to any problem
whose solution domain can be quantified by a function which needs to
be optimised.

Specific genetic operators are applied to the parents, in the process of
reproduction, which then give rise to offspring. The genetic operators
can be classified as follows:

Selection: The purpose of selection is to isolate fitter individuals in the
population and allow them to propagate in order to give rise to new
offspring with higher fitness values. We implemented the stochastic
universal sampling selection operator, in which individuals are mapped
to contiguous segments on a line in proportion to their fitness values.23
Individuals are then selected by sampling the line at uniformly spaced
intervals. Although fitter individuals have a higher probability of selection,
this technique improves the chances that weaker individuals will be
selected, allowing diversity to enter the population and reducing the
probability of convergence to a local optimum.

Crossover: Crossover is the process of mating two individuals, with
the expectation that they can produce a fitter offspring.22 The crossover
genetic operation involves the selection of random loci to mark a
cross site within the two parent chromosomes, copying the genes to

the offspring. A bespoke knowledge-based crossover operator13 was
developed for our implementation, in order to incorporate domain
knowledge and improve the rate of convergence.

Mutation: Mutation is the key driver of diversity in the candidate solution
set or search space.22 It is usually applied after crossover and aims to
ensure that genetic information is randomly distributed, in order to avoid
convergence to local minima. It introduces new genetic structures in
the population by randomly modifying some of its building blocks and
enables the algorithm to traverse the search space globally.

Elitism: Coley24 states that fitness-proportional selection does not
necessarily favour the selection of any particular individual, even if it is
the fittest. Thus, the fittest individuals may not survive an evolutionary
cycle. Elitism is the process of preserving the fittest individuals by direct
promotion to the next generation, without any genetic transformations
due to crossover or mutation.22

Replacement: Replacement is the last stage of any evolution cycle, in
which the algorithm replaces old members of the current population
with new members.22 This mechanism ensures that the population size
remains constant, while the weakest individuals in each generation
are dropped.

Although GAs are very effective for solving complex problems, this
positive trait can unfortunately be offset by long execution times caused by
the traversal of the search space. GAs lend themselves to parallelisation,
provided the fitness values can be determined independently for each
of the candidate solutions. While a number of schemes have been
proposed in the literature to achieve this parallelisation,8,22,25 we have
chosen to implement the master-slave model.

Master-slave parallelisation
Master-slave PGAs, also denoted as global PGAs, involve a single
population, distributed amongst multiple processing units for determination
of fitness values and the consequent application of genetic operators. They
allow for computation on shared-memory processing entities or any type
of distributed system topology, for example grid computing.8

Ismail25 provides a summary of the key features of the master-slave
PGA: the algorithm uses a single population (stored by the master) and
the fitness evaluation of all of the individuals is performed in parallel
(by the slaves). Communication occurs only as each slave receives
an individual (or subset of individuals) to evaluate and when the slaves
return the fitness values, sometimes after mutation has been applied
with the given probability. The particular algorithm implemented in this
paper is synchronous, i.e. the master waits until it has received the
fitness values for all individuals in the population before proceeding with
selection and mutation. The synchronous master-slave PGA thus has the
same properties as a conventional GA, except evaluation of the fitness
of the population is achieved at a faster rate. The algorithm is relatively
easy to implement and a significant speed-up can be expected if the
communications cost does not dominate the computation cost. The
whole process has to wait for the slowest processor to finish its fitness
evaluations until the selection operator can be applied.

A number of authors have used the Message Parsing Interface (MPI)
paradigm to implement a master-slave PGA. Digalakis and Margaritis26
implement a synchronous MPI PGA and shared-memory PGA, whereby
fitness computations are parallelised and other genetic operators are
applied by the master node only. They demonstrate a computation
speed-up which scales linearly with the number of processors for large
population sizes. Zhang et al.27 use a centralised control island model
to concurrently apply genetic operators to sub-groups, with a bespoke
migration strategy using elite individuals from sub-groups. Nan et al.28
used the MATLAB parallel computing and distributed computing toolboxes
to develop a master-slave PGA, demonstrating its efficacy on the image
registration problem when using a cluster computing configuration.

For our implementation, we made use of the Nvidia CUDA platform to
achieve massive parallelism by utilising the graphical processing unit
(GPU) streaming multiprocessors (SM) as slaves, and the central
processing unit (CPU) as master.

Research Article High-speed market clustering
Page 3 of 9

http://www.sajs.co.za

4South African Journal of Science
http://www.sajs.co.za

Volume 112 | Number 1/2
January/February 2016

Computational platform and implementation
CUDA is Nvidia’s platform for massively parallel high-performance
computing on the Nvidia GPUs. At its core are three key abstractions: a
hierarchy of thread groups, shared memories and barrier synchronisation.
Full details on the execution environment, thread hierarchy, memory
hierarchy and thread synchronisation schemes have been omitted
here, but we refer the reader to Nvidia technical documentation29,30 for a
comprehensive discussion.

Specific computational environment
The CUDA algorithm and the respective testing tools were developed
using Microsoft Visual Studio 2012 Professional, with the Nvidia Nsight
extension for CUDA-C projects. The configurations shown in Table 1 were
tested to determine the versatility of the CUDA clustering algorithms.

We had the opportunity to test two candidate graphics cards for the
algorithm implementation: the Nvidia GTX Titan Black and the Nvidia
TESLA C2050. Both cards offer double-precision calculations and
a similar number of CUDA cores and TFLOPS (tera floating point
operations per second); however, the GTX card is significantly cheaper
than the TESLA card. The primary reason for this cost difference is the
use of ECC (error check and correction) memory on the TESLA cards,
where extra memory bits are present to detect and fix memory errors.31
The presence of ECC memory ensures consistency in results generated
from the TESLA card, which is critical for rigorous scientific computing.
In further investigations, we will explore the consistency of the solution
quality generated from the GTX card, and whether the resultant error is
small enough to justify the cost saving compared to the TESLA card.

Implementation
The following objectives were considered in this study: (1) to investigate
and tune the behaviour of the PGA implementation using a pre-
defined set of 40 simulated stocks, featuring four distinct and disjoint
clusters, (2) to identify clusters in a real-world data set, namely high-
frequency price evolutions of stocks and (3) to test the efficiency of the
GPU environment.

Representation
We used integer-based encoding for the representation of individuals in
the GA:

Individual = S = {s1, s2 ,..., si –1 , si ,..., sN} Equation 9

where si=1,...,K and i=1,...,N. Here si is the cluster to which object
i belongs. In terms of the terminology pertaining to GAs, the ith gene
denotes the cluster to which the ith object or asset belongs. The numbers
of objects or assets is N; thus to permit the possibility of an all-singleton
configuration, we let K=N. This representation was implemented by
Gebbie et al.21 in their serial GA and was adopted in this research.

Fitness function
The Giada and Marsili maximum log-likelihood function Lc, as shown
in Equation 8, was used as the fitness function. This function is used
to determine whether the cluster configuration represents the inherent
structure of the data set, i.e. it is used to detect if the GA converges to
the fittest individual, corresponding to the cluster configuration which
best explains the structure amongst correlated assets or objects in the
data set.

Master-slave implementation
The unparallelised MATLAB GA implementation of the clustering
technique by Gebbie et al.21 served as a starting point. In order to
maximise the performance of the GA, the application of genetic operators
and evaluation of the fitness function were parallelised for the CUDA
framework.13 A summarised exposition is presented here.

Emphasis was placed on outsourcing as much of the GA execution
to the GPU and using GPU memory as extensively as possible.32 The
master-slave PGA uses a single population, for which evaluation of
the individuals and successive application of genetic operators are
conducted in parallel. The global parallelisation model does not predicate
anything about the underlying computer architecture, so it can be
implemented efficiently on a shared-memory and distributed-memory
model platform.22 Delegating these tasks to the GPU and making
extensive use of GPU memory minimises the data transfers between the
host and device. These transfers have a significantly lower bandwidth
than data transfers between shared or global memory and the kernel
executing on the GPU. The algorithm in Gebbie et al.21 was modified
to maximise the performance of the master-slave PGA and to have a
clear distinction between the master node (CPU) and slave nodes (GPU
streaming multiprocessors). The CPU controls the evolutionary process
by issuing the commands for the GA operations to be performed by

Table 1: Development, testing and benchmarking environments

Environment Configuration Framework

WINDOWS_GTX_CUDA

Windows 7 Professional Service Pack 1 (64-bit)

Core i7-4770K CPU@3.50 GHz x 8, 32 GB RAM

Nvidia GTX Titan Black with 6 GB RAM, CC: 3.0, SM: 3.5

CUDA-C 5.5 (parallel)

WINDOWS_GTX_MATLAB

Windows 7 Professional Service Pack 1 (64-bit)

Core i7-4770K CPU@3.50 GHz x 8, 32 GB RAM

Nvidia GTX Titan Black with 6 GB RAM, CC: 3.0, SM: 3.5

MATLAB 2013a (serial)

WINDOWS_TESLA_CUDA

Windows 7 Professional Service Pack 1 (64-bit)

Intel Core i7-X980 CPU@3.33 GHz x 12, 24 GB RAM

Nvidia TESLA C2050 with 2.5 GB RAM, CC: 2.0, SM: 2.0

CUDA-C 5.5 (parallel)

WINDOWS_TESLA_MATLAB

Windows 7 Professional Service Pack 1 (64-bit)

Intel Core i7-X980 CPU@3.33 GHz x 12, 24 GB RAM

Nvidia TESLA C2050 with 2.5 GB RAM, CC: 2.0, SM: 2.0

MATLAB 2013a (serial)

CPU, central processing unit; RAM, random access memory; CC, compute capability; SM, streaming multiprocessor.

Research Article High-speed market clustering
Page 4 of 9

http://www.sajs.co.za

5South African Journal of Science
http://www.sajs.co.za

Volume 112 | Number 1/2
January/February 2016

the GPU streaming multiprocessors. The pseudo-code for the algorithm
implemented is shown in Algorithm 1.

Algorithm 1: Master-slave parallel genetic algorithm for cluster identification

Initialise ecosystem for evolution

Size the thread blocks and grid to achieve greatest parallelisation

ON GPU: Create initial population

while TRUE do

ON GPU: Evaluate fitness of all individuals

ON GPU: Evaluate state and statistics

ON GPU: Determine if termination criteria are met

if YES then

Terminate ALGO; exit while loop;

else

Continue

end if

ON GPU: Isolate fittest individuals

ON GPU: Apply elitism

ON GPU: Apply scaling

ON GPU: Apply genetic operator: selection

ON GPU: Apply genetic operator: crossover

ON GPU: Apply genetic operator: mutation

ON GPU: Apply replacement (new generation created)

end while

Report on results

Clean-up (de-allocate memory on GPU/CPU; release device)

GPU, graphics processing unit; CPU, central processing unit.

To achieve data parallelism and make use of the CUDA thread hier-
archy, we mapped individual genes onto a two-dimensional grid. Using
the representation shown in Equation 9, assuming a population of 400
individuals and 18 stocks:

Individual1 = {1,2,4,5,7...,6}

Individual2 = {9,2,1,1,1...,2}

Individual3 = {3,1,3,4,6...,2}

Individual400 = {8,1,9,8,7...,3}

would be mapped to grid cells, as illustrated in Figure 1. The data grid
cells are mapped to threads, where each thread executes a kernel
processing the data cell at the respective xy-coordinate.

Given the hardware used in this investigation (see Table 1), Table 2
outlines the restrictions on the permissible stock universe and population
sizes imposed by the chosen mapping of individual genes to threads. A
thread block dimension of 32 is chosen for larger problems, because
this number ensures that the permissible population size is larger than
the number of stocks to cluster.

We note that the efficiency of the algorithm may be compromised near
the physical limits outlined in Table 2, as the CUDA memory hierarchy
would force threads to access high-latency global memory banks more
often. However, for the particular domain problem we are considering
here, the Johannesburg Stock Exchange consists of about 400 listed
companies on its main board, which represents an upper limit on the
number of stocks of interest for local cluster analysis. This is well within
the physical limits of the algorithm, while still providing scope to extend
the application to multiple markets.

The details on the full implementation, as well as specific choices
regarding initialisation, block sizes and threads per block, are given
in Cieslakiewicz13.

Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 ... Individual 400

GRID

Block (0,0) Block (1,0) Block (2,0) Block (3,0) Block (4,0) ... Block (399,0)

Stock 1 1 9 3 2 5 8

Block (0,1) Block (1,1) Block (2,1) Block (3,1) Block (4,1) ... Block (399,1)

Stock 2 2 2 1 1 7 1

Block (0,2) Block (1,2) Block(2,2) Block (3,2) Block (4,2) ... Block (399,2)

Stock 3 4 1 3 3 3 9

Block (0,3) Block (1, 3) Block (2,3) Block (3,3) Block (4,3) ... Block (399,3)

Stock 4 5 1 4 3 4 8

Block (0,4) Block (1,4) Block (2,4) Block (3,4) Block (4,4) ... Block (399,4)

Stock 5 7 1 6 7 8 7

Block (0,17) Block (1,17) Block (2,17) Block (3,17) Block (4,17) ... Block (399,17)

Stock 18 6 2 2 1 2 3

Figure 1: Mapping of individuals onto the Compute Unified Device Architecture (CUDA) thread hierarchy.

Research Article High-speed market clustering
Page 5 of 9

http://www.sajs.co.za

6South African Journal of Science
http://www.sajs.co.za

Volume 112 | Number 1/2
January/February 2016

Key implementation challenges
A key challenge in CUDA programming is adapting to the single-program
multiple-data (SPMD) paradigm, where multiple instances of a single
program use unique offsets to manipulate portions of a block of data.33
This architecture suits data parallelism, whereas task parallelism
requires a special effort. In addition, because each warp (a group of 32
threads) is executed on a single SPMD processor, divergent threads in a
warp can severely impact performance. In order to exploit all processing
elements in the multi-processor, a single instruction is used to process
data from each thread. However, if one thread needs to execute different
instructions as a result of a conditional divergence, all other threads must
effectively wait until the divergent thread re-joins them. Thus, divergence
forces sequential thread execution, negating a large benefit provided by
SPMD processing.

The CUDA memory hierarchy contains numerous shared memory banks
which act as a common data cache for threads in a thread block. In
order to achieve full throughput, each thread must access a distinct
bank and avoid bank conflicts, which would result in additional memory
requests and reduce efficiency. In our implementation, bank conflicts
were avoided by using padding, in which shared memory is padded
with an extra element such that neighbouring elements are stored in
different banks.34

CUDA provides a simple and efficient mechanism for thread synchroni-
sation within a thread block via the __syncthreads() barrier function;
however, inter-block communication is not directly supported during the
execution of a kernel. Given that the genetic operators can be applied
only once the entire population fitness is calculated, it is necessary to
synchronise thread blocks assigned to the fitness computation operation.
We implemented the CPU implicit synchronisation scheme.35,36 As kernel
launches are asynchronous, successive kernel launches are pipelined
and thus the executions are implicitly synchronised with the previous
launch, with the exception of the first kernel launch. Given the latency
incurred on calls between the CPU and GPU, and the consequent drag
on performance, GPU synchronisation schemes were explored which
achieve the required inter-block communication. In particular, GPU
simple synchronisation, GPU tree-based synchronisation and GPU lock-
free synchronisation were considered.35

Ultimately, the GPU synchronisation schemes were too restrictive for our
particular problem, because the number of thread blocks would have an
upper bound equal to the number of SMs on the GPU card. If the number
of thread blocks is larger than the number of SMs on the card, execution
may deadlock. This deadlock could be caused by the warp scheduling
behaviour of the GPU, whereby active thread blocks resident on a SM
may remain in a busy waiting state, waiting for unscheduled thread
blocks to reach the synchronisation point. While this scheme may be
more efficient for smaller problems, we chose the CPU synchronisation
scheme in the interest of relative scalability.

Data pre-processing
To generate the N-stock correlation matrices to demonstrate the
viability of the algorithm on real-world test data, data correlations were
computed on data, where missing data was addressed using zero-
order hold interpolation.37 The market mode was removed using the

method suggested by Giada and Marsili17 using a recursive averaging
algorithm. A covariance matrix was then computed using an iterative
online exponentially weighted moving average filter with a default
forgetting factor of λ=0.98. The correlation matrix was computed
from the covariance matrix and was cleaned using random matrix
theory methods. In particular, Gaussian noise effects were reduced
by eliminating eigenvalues in the Wishart range in a trace-preserving
manner.37 This process enhanced the clusters and improved the stability
of estimated sequence of correlation matrices.

Data post-processing
Computed cluster configurations are read from the CUDA output flat
file. Successively, an adjacency matrix is constructed by using data
values from the correlation matrix in conjunction with computed cluster
configuration of the respective data set. The adjacency matrix is then
used to construct a disjoint set of minimal spanning trees (MSTs), with
each tree capturing the inter-connectedness of each cluster. Each MST
exhibits ns – 1 edges, connecting the ns stocks of the cluster in such a
manner that the sum of the weights of the edges is a minimum. Kruskal’s
algorithm was used to generate the MSTs, which depict the linkages
between highly correlated stocks, providing a graphical visualisation of
the resultant set of disjoint clusters.38

Data and results
Data
In this investigation we used two sets of data: the training set and the test
set. The training set consisted of a simulated time series of 40 stocks
which exhibit known distinct, disjoint clusters. The recovery of these
induced clusters was used to tune the PGA parameters. The test set
consisted of actual stock quoted midprice ticks aggregated into 3-min
bars from 28 September 2012 to 10 October 2012, viz. approximately
1800 data points for each stock. Stocks chosen represent the 18 most
liquid stocks on the Johannesburg Stock Exchange for that period,
according to traded volumes. For both data sets, correlation matrices
were constructed from the time series data to serve as inputs for the
clustering algorithm. The test set results below show the summary
statistics from a set of 1760 correlation matrices of 18 Johannesburg
Stock Exchange stocks.

Results
We show a sample set of results here. Further discussion regarding
aspects of the analysis are given in Cieslakiewicz13.

Optimal algorithm settings
Various investigations were undertaken to identify optimal adjoint
parameters for the PGA. In each case, the algorithm was successively
applied to the training set, with known disjoint clusters. Settings were
varied until the rate of convergence was maximised. Once the optimal
value for each adjoint parameter had been determined from the training
set, the optimal algorithm configuration was deployed on the test set.
In further investigations, we will study the effect of various adjoint
parameter choices on the rate of convergence and algorithm efficiency
for varying stock universe sizes.

Table 2: Restrictions on the number of stocks and population size

Graphics card
Compute
capability

Number of
streaming

multiprocessors

Maximum threads
/ thread block

Thread block
dimension

Maximum
thread blocks /
multiprocessor

Maximum number
of stocks

Maximum
population size

Nvidia GTX
Titan Black

3.5 15 1024 32 16 3840 17 472

Nvidia Tesla
C2050

2.0 14 1024 32 8 3584 18 720

For the Tesla card, the maximum number of stocks = (14) * (1024/32) * 8 = 3584 and maximum population size = (65 535 / (3584/32)) * 32 = 18 720.

Research Article High-speed market clustering
Page 6 of 9

http://www.sajs.co.za

7South African Journal of Science
http://www.sajs.co.za

Volume 112 | Number 1/2
January/February 2016

The optimal configuration shown in Table 3 for the PGA was deployed on
the test set, given a population size of 1000.

Table 3: Optimal adjoint parameter values for given training set

Adjoint parameter Value

Number of generations 400

Crossover probability (Pc) 0.9

Mutation probability (Pm) 0.1

Error tolerance 0.00001

Stall generations (Gstall) 50

Elite size 10

Crossover operator Knowledge-based operator

Mutation operator Random replacement

Knowledge-based crossover probability 0.9

Benchmark timing results
Table 4 illustrates the efficiency of the CUDA PGA implementation,
compared to the MATLAB serial GA. Direct comparison between the
MATLAB serial GA and CUDA PGA may be biased by the fundamental
architecture differences of the two platforms. Nevertheless, we
immediately observe a significant 10–15 times performance improvement
for the test set cluster analysis run. This improvement can be attributed to
the utilisation of a parallel computation platform, a novel genetic operator
and the algorithm tuning techniques employed. On the GTX platform, the
CUDA PGA takes 0.80 s to identify residual clusters inherent in a single
correlation matrix of 18 real-world stocks, demonstrating its potential as
a near-real-time risk assessment tool. The outperformance of the GTX
card is likely explained by the card’s relative faster core speed, memory
speed, larger memory and memory bandwidth compared to the TESLA
card. Although this may justify the use of the more cost-effective GTX
card, it is not clear that this performance differential will persist as the
size of the stock universe increases, or whether the GTX card preserves
solution quality. We note that the scale of the performance improvement
over the serial algorithm is not as important as the absolute result of
obtaining sub-second computation time. The CUDA PGA thus serves
the objective of near-real-time risk assessment, whereby interesting
phenomena from emerging stock cluster behaviour can be identified and
acted upon to mitigate adverse scenarios. The scalability of these results
should be investigated in further research; in particular, the impact of
the CUDA memory hierarchy on computation time as global memory
accesses increase should be investigated.

In these results we assume correlation matrices are readily available as
inputs for the cluster analysis algorithm. Further research to investigate
computationally efficient correlation estimation for high-frequency
data is a separate problem in the objective of developing a robust and
practical near-real-time risk assessment tool.

Although the results are promising, it is not clear that the SPMD
architecture used by CUDA is well suited for the particular problem
considered. The required data dependence across thread blocks

restricts the assignment of population genes to threads and results in
a large number of synchronisation calls to ensure consistency of each
generation. An MPI island model with distributed fitness computation
and controlled migration is perhaps a more well-posed solution39;
however, it is important to consider the cost of the set-up required to
achieve the equivalent speed-up provided by CUDA. This cost should be
explored in further research.

Interpretation of real-world test set results
In this section, we illustrate a sample of the resultant cluster con-
figurations which were generated from our model, represented
graphically as MSTs.13,20 This illustration serves as a particular domain
application which provides an example of resulting cluster configurations
which have meaningful interpretations. The thickness of the edges
connecting nodes gives an indication of the strength of the correlation
between stocks.

The South African equity market is often characterised by diverging
behaviour between financial/industrial stocks and resource stocks and
strong coupling with global market trends.

SLM

ASA

SBK SHF GFI OML
KIO NPN

IMPFSR

AGLSOLBIL

Figure 2: Morning trading residual clusters (on 28 September 2012
at 09:03).

In Figure 2, we see four distinct clusters emerge as a result of the early
morning trading patterns, just after market open: most notably, a six-
node financial/industrial cluster (SLM, SBK, ASA, SHF, GFI, OML) and
a three-node resource cluster (BIL, SOL, AGL). At face value, these
configurations would be expected; however, we notice that GFI, a gold
mining company, appears in the financial cluster and FSR, a banking
company, does not appear in the financial cluster. These examples are of
short-term decoupling behaviour of individual stocks as a consequence
of idiosyncratic factors.

SAB

IMP

BIL
CFR

AGL

SOL

ANG

NPN FSR

MTN

Figure 3: Morning trading (after UK market open) residual clusters (on
28 September 2012 at 10:21).

Table 4: Benchmark computational speed results

Environment Framework Benchmark Median time (s) Minimum time (s) Maximum time (s)

WINDOWS_GTX_CUDA CUDA-C 5.5 18-stock test set (optimal configuration) 0.80 0.73 3.17

WINDOWS_GTX_MATLAB Serial 18-stock test set (optimal configuration) 7.77 6.72 13.27

WINDOWS_TESLA_CUDA CUDA-C 5.5 18-stock test set (optimal configuration) 1.39 1.36 5.51

WINDOWS_TESLA_MATLAB Serial 18-stock test set (optimal configuration) 15.91 13.41 26.22

Research Article High-speed market clustering
Page 7 of 9

http://www.sajs.co.za

8South African Journal of Science
http://www.sajs.co.za

Volume 112 | Number 1/2
January/February 2016

Figure 3 illustrates the effect of the UK market open on local trading
patterns. We see a clear emergence of a single large cluster, indicating
that trading activity by UK investors has a significant impact on the local
market. When examining the large single cluster, all of the stocks have
either primary or secondary listings in the USA and UK. In particular,
SAB and ANG have secondary listings on the London Stock Exchange,
whereas BIL and AGL have primary listings on the London Stock
Exchange.40 It is also unusual to see such a strong link (correlation)
between AGL, a mining company, and CFR, a luxury goods company.
This correlation may be evidence that significant UK trading in these two
stocks can cause a short-term elevated correlation, which may not be
meaningful or sustainable.

NPN

MTN ASA

IMP

CFR FSR ANG

BILSOLSABAGL

Figure 4: Midday trading residual clusters (on 28 September 2012 at
12:21).

In Figure 4, we consider midday trading patterns. We see that the
cluster ing effect from UK trading has dissipated and multiple disjoint
clusters have emerged. CFR has decoupled from AGL in the 2 h after
the UK market open, as we might expect. We see a four-node financial/
industrial cluster (NPN, MTN, ASA, IMP) and a four-node resource
cluster (AGL, SAB, SOL, BIL); IMP, a mining company, appears in the
financial/industrial cluster.

OML SBK

SHF

FSR

CFR

ANGGFISLM

ASA KIOMTNAMS

Figure 5: Afternoon trading (after US market open) residual clusters (on
28 September 2012 at 15:33).

Figure 5 illustrates the effect of the US market open on local trading
patterns. Similar to what we observed in Figure 3, we see the emergence
of a large single cluster, driven by elevated short-term correlations
amongst constituent stocks. This observation provides further evidence
that significant trading by foreign investors in local stocks can cause a
material impact on stock market dynamics.

Conclusion
In this paper, we have verified that the Giada and Marsili11 likelihood
function is a viable, parallelisable approach for isolating residual
clusters in data sets on a GPU platform. Key advantages of this function
compared with conventional clustering methods are that: (1) the method
is unsupervised and (2) the interpretation of results is transparent in
terms of the model.

The implementation of the master-slave PGA showed that efficiency
depends on various algorithm settings. The type of mutation operator
utilised has a significant effect on the algorithm’s efficiency to isolate
the optimal solution in the search space, whilst the other adjoint
parameter settings primarily impact the convergence rate. According to
the benchmark test results, the CUDA PGA implementation runs 10–15
times faster than the serial GA implementation in MATLAB for detecting

clusters in 18-stock real-world correlation matrices. Specifically, when
using the Nvidia GTX Titan Black card, clusters are recovered in sub-
second speed, demonstrating the efficiency of the algorithm.

Provided intraday correlation matrices can be estimated from high
frequency data, this significantly reduced computation time suggests
intraday cluster identification can be practical, for near-real-time risk
assessment for financial practitioners.

Detecting cluster anomalies and measuring persistence of effects may
provide financial practitioners with useful information to support local
trading strategies. From the sample results shown, it is clear that intraday
financial market evolution is dynamic, reflecting effects which are both
exogenous and endogenous. The ability of the clustering algorithm to
capture interpretable and meaningful characteristics of the system
dynamics, and the generality of its construction, suggests the method
can be successful in other domains.

Further investigations will include adjoint parameter tuning and
performance scalability for varying stock universe sizes and cluster
types, quantifying the variability of solution quality on the GTX architecture
as a result of non-ECC memory usage and the investigation of alternative
cost-effective parallelisation schemes. Given the SPMD architecture
used by CUDA, the required data dependence across thread blocks
restricts the assignment of population genes to threads and results in
a large number of synchronisation calls to ensure consistency of each
generation. An MPI island model with distributed fitness computation and
controlled migration is perhaps a more well-posed solution to explore39;
however, the cost of the set-up required to achieve the equivalent speed-
up provided by CUDA should be justified.

Acknowledgements
This work is based on research supported in part by the National
Research Foundation (NRF) of South Africa (grant numbers 87830,
74223 and 70643). The conclusions herein are those of the authors
and the NRF accepts no liability in this regard. We thank Margit Haerting
and Michelle Kuttel for their feedback on preceding projects culminating
in this work.

Authors’ contributions
D.W. and T.G. were responsible for the initial conception of the problem
and idea development. T.G. assisted in data provision and cleaning, as
well as in implementation of the serial algorithm. D.H. implemented the
code, performed simulations, collated results and wrote the manuscript.

References
1. Luque G, Alba E. Parallel genetic algorithms. Berlin: Springer-Verlag; 2011.

http://dx.doi.org/10.1007/978-3-642-22084-5_1

2. Colorni A, Dorigo M, Maffioli F, Maniezzo V, Righini G, Trubian M. Heuristics
from nature for hard combinatorial optimization problems. Int Trans Oper Res.
1996;3:1–21. http://dx.doi.org/10.1111/j.1475-3995.1996.tb00032.x

3. Bohm C, Noll R, Plant C, Wackersreuther B. Density-based clustering using
graphics processors. In: Proceedings of the 18th ACM Conference on
Information and Knowledge Management. New York: ACM; 2009. p. 661–
670. http://dx.doi.org/10.1145/1645953.1646038

4. Brecheisen S, Kriegel HP, Pfeifle M. Parallel density-based clustering of
complex objects. In: Ng W-K, Kitsuregawa M, Li J, Chang K, editors.
Advances in knowledge discovery and data mining. Proceedings of the 10th
Pacific-Asia Conference; 2006 Apr 9–12; Singapore. Berlin: Springer; 2006.
p. 179–188. http://dx.doi.org/10.1007/11731139_22

5. Dessel T, Anderson DP, Magdon-Ismail M, Newberg H, Szymanski BK,
Varela CA. An analysis of massively distributed evolutionary algorithms. In:
Proceedings of 2010 IEEE Congress on Evolutionary Computation; 2010 July
18–23; Barcelona, Spain. IEEE; 2010. p. 1–8. http://dx.doi.org/10.1109/
CEC.2010.5586073

6. Jaimes A, Coello Coello C. MRMOGA: A new parallel multi-objective evolutionary
algorithm based on the use of multiple resolutions. Concurrency Comput Pract
Experience. 2007;19(4):397–441. http://dx.doi.org/10.1002/cpe.1107

Research Article High-speed market clustering
Page 8 of 9

http://www.sajs.co.za
http://dx.doi.org/10.1007/978-3-642-22084-5_1
http://dx.doi.org/10.1111/j.1475-3995.1996.tb00032.x
http://dx.doi.org/10.1145/1645953.1646038
http://dx.doi.org/10.1007/11731139_22
http://dx.doi.org/10.1109/CEC.2010.5586073
http://dx.doi.org/10.1109/CEC.2010.5586073
http://dx.doi.org/10.1002/cpe.1107

9South African Journal of Science
http://www.sajs.co.za

Volume 112 | Number 1/2
January/February 2016

7. Kromer P, Platos J, Snasel V. Data parallel density-based genetic clustering
on the CUDA architecture. Concurrency Comput Pract Experience.
2014;26:1097–1112. http://dx.doi.org/10.1002/cpe.3054

8. Pospichal P, Jaros J, Schwarz J. Parallel genetic algorithm on the CUDA
architecture. In: Di Chio C, Cagnoni S, Cotta C, Ebner M, Ekárt A, Esparcia-Alcazar
AI, et al., editors. Applications of Evolutionary Computation EvoApplications
2010: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and
EvoSTOC; 2010 Apr 7–9; Istanbul, Turkey. Berlin: Springer; 2010. p. 442–451.
http://dx.doi.org/10.1007/978-3-642-12239-2_46

9. Robilliard D, Marion M, Fonlupt C. High performance genetic programming
on GPU. In: Proceedings of the 2009 Workshop on Bio-inspired Algorithms
for Distributed Systems. New York: ACM; 2009. p. 85–94. http://dx.doi.
org/10.1145/1555284.1555299

10. Tirumalai V, Ricks K, Woodbury K. Using parallelization and hardware
concurrency to improve the performance of a genetic algorithm. Concurrency
Comput Pract Experience. 2007;19:443–462. http://dx.doi.org/10.1002/
cpe.1113

11. Giada L, Marsili M. Algorithms of maximum likelihood data clustering with
applications. Physica A. 2002;315:650–664. http://dx.doi.org/10.1016/
S0378-4371(02)00974-3

12. Omran M, Salaman A, Engelbrecht A. Dynamic clustering using particle
swarm optimization with application in image segmentation. Pattern Anal
Appl. 2006;8:332–344. http://dx.doi.org/10.1007/s10044-005-0015-5

13. Cieslakiewicz D. Unsupervised asset cluster analysis implemented
with parallel genetic algorithms on the Nvidia CUDA platform [thesis].
Johannesburg: University of the Witwatersrand; 2014.

14. Everitt B, Landau S, Leese M. Cluster analysis. 5th ed. Chichester: Wiley; 2001.

15. Blatt M, Wiseman S, Domany E. Superparamagnetic clustering of
data. Phys Rev Lett. 1996;76:3251–3254. http://dx.doi.org/10.1103/
PhysRevLett.76.3251

16. Kullmann L, Kertész J, Mantegna RN. Identification of clusters of companies
in stock indices via Potts super-paramagnetic transitions. Physica A. 2000;
287(3–4):412–419. http://dx.doi.org/10.1016/S0378-4371(00)00380-0

17. Giada L, Marsili M. Data clustering and noise undressing of correlation
matrices. Phys Rev E. 2001;63(6), Art. #061101, 8 pages. http://dx.doi.
org/10.1103/PhysRevE.63.061101

18. Noh JD. A model for correlations in stock markets. Phys Rev E.
2000;61(5):5981–5982. http://dx.doi.org/10.1103/PhysRevE.61.5981

19. Sornette D. Critical phenomena in natural sciences: Chaos, fractals,
selforganization and disorder: Concepts and tools. Berlin: Springer; 2000.
http://dx.doi.org/10.1007/978-3-662-04174-1

20. Mbambiso B. Dissecting the South African equity markets into sectors and
states [thesis]. Cape Town: University of Cape Town; 2009.

21. Gebbie T, Wilcox D, Mbambiso B. Spin, stochastic factor models, and a GA.
PDF presented at: Southern African Finance Association conference; 2010.
http://www.academia.edu/2499934/Spin_Stochastic_Factor_Models_
and_a_GA.

22. Sivanandam S, Deepa S. Introduction to genetic algorithms. Berlin: Springer
Science & Business Media; 2010.

23. Baker J. Reducing bias and inefficiency in the selection algorithm. In:
Grefenstette JJ, editor. Proceedings of the Second International Conference
on Genetic Algorithms and their Application. Hillsdale, NJ: L. Erlbaum
Associates Inc.; 1987. p. 14–21.

24. Coley D. An introduction to genetic algorithms for scientists and engineers.
Singapore: World Scientific Publishing; 1999. http://dx.doi.org/10.1142/3904

25. Ismail M. Parallel genetic algorithms (PGAs): Master-slave paradigm
approach using MPI. IEEE e-Tech. 2004;31:83–87. http://dx.doi.org/10.1109/
ETECH.2004.1353848

26. Digalakis J, Margaritis K. Parallel evolutionary algorithms on message-
parsing clusters: Working paper [document on the Internet]. c2003 [cited
2015 May 12]. Available from: http://citeseerx.ist.psu.edu/viewdoc/downloa
d?doi=10.1.1.3.2539&rep=rep1&type=pdf

27. Zhang J, Liu W, Liu G. Parallel genetic algorithm based on the MPI
environment. Telkomnika. 2012;10:1708–1715. http://dx.doi.org/10.11591/
telkomnika.v10i7.1566

28. Nan L, Pengdong G, Yongquan L, Wenhua Y. The implementation and
comparison of two kinds of parallel genetic algorithm using Matlab. In: Ninth
International Symposium on Distributed Computing and Applications to
Business, Engineering and Science (DCABES); 2010 Aug. 10–12; Hong Kong,
China. IEEE; 2010. p. 13–17. http://dx.doi.org/10.1109/DCABES.2010.9

29. Nvidia. Nvidia CUDA C programming guide. Santa Clara, CA: Nvidia
Corporation; 2011.

30. Nvidia. CUDA dynamic parallelism programming guide. Santa Clara, CA:
Nvidia Corporation; 2012.

31. ACT HPC. GTX vs Tesla [blog on the Internet]. c2014 [cited 2014 Sep 25].
Available from: http://www.advancedclustering.com/hpc-cluster-blog-gtx-
vs-tesla

32. Zhang S, He Z. Implementation of parallel genetic algorithm based on CUDA.
In: Cai Z, Li Z, Kang Z, Liu Y, editors. Advances in Computation and Intelligence.
Proceedings of the 4th International Symposium on Advances in Computation
and Intelligence; 2009 Oct 23–25; Huangshi, China. Berlin: Springer; 2009. p.
24–30. http://dx.doi.org/10.1007/978-3-642-04843-2_4

33. Darema F. SPMD model: Past, present and future. In: Cotronis Y, Dongarra J.
Recent advances in parallel virtual machine and message passing interface:
Proceedings of the 8th European PVM/MPI Users’ Group Meeting; 2001
Sep 23–26; Santorini, Greece. Berlin: Springer; 2001. p. 1. http://dx.doi.
org/10.1007/3-540-45417-9_1

34. Brodtkorb A, Hagen T, Saetra M. Graphics processing unit (GPU) programming
strategies and trends in GPU computing. J Parallel Distr Com. 2012;73(1):4–
13. http://dx.doi.org/10.1016/j.jpdc.2012.04.003

35. Xiao S, Feng W. Inter-block GPU communication via fast barrier synchronization.
In: 2010 IEEE International Symposium on Parallel & Distributed Processing
(IPDPS); 2010 Apr 19–23; Atlanta, GA, USA. IEEE; 2010. p. 1–12. http://
dx.doi.org/10.1109/IPDPS.2010.5470477

36. Nvidia. CUDA C best practices guide. Santa Clara, CA: Nvidia Corporation;
2012.

37. Wilcox D, Gebbie T. An analysis of cross-correlations in South African
market data. Physica A. 2007;375:584–598. http://dx.doi.org/10.1016/j.
physa.2006.10.030

38. Kruskal J. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc Amer Math Soc. 1956;7:48–50. http://dx.doi.
org/10.1090/S0002-9939-1956-0078686-7

39. Whitley D, Rana S, Heckendorn R. The island model genetic algorithm: On
separability, population size and convergence. J Comput Inform Technol.
1999;7:33–47.

40. JSE. Companies and financial instruments [homepage on the Internet].
c2013 [cited 2013 Sep 25]. Available from: https://www.jse.co.za/current-
companies/companies-and-financial-instruments

Research Article High-speed market clustering
Page 9 of 9

http://www.sajs.co.za
http://dx.doi.org/10.1002/cpe.3054
http://dx.doi.org/10.1007/978-3-642-12239-2_46
http://dx.doi.org/10.1145/1555284.1555299
http://dx.doi.org/10.1145/1555284.1555299
http://dx.doi.org/10.1002/cpe.1113
http://dx.doi.org/10.1002/cpe.1113
http://dx.doi.org/10.1016/S0378-4371(02)00974-3
http://dx.doi.org/10.1016/S0378-4371(02)00974-3
http://dx.doi.org/10.1007/s10044-005-0015-5
http://dx.doi.org/10.1103/PhysRevLett.76.3251
http://dx.doi.org/10.1103/PhysRevLett.76.3251
http://dx.doi.org/10.1016/S0378-4371(00)00380-0
http://dx.doi.org/10.1103/PhysRevE.63.061101
http://dx.doi.org/10.1103/PhysRevE.63.061101
http://dx.doi.org/10.1103/PhysRevE.61.5981
http://dx.doi.org/10.1007/978-3-662-04174-1
http://www.academia.edu/2499934/Spin_Stochastic_Factor_Models_and_a_GA
http://www.academia.edu/2499934/Spin_Stochastic_Factor_Models_and_a_GA
http://dx.doi.org/10.1142/3904
http://dx.doi.org/10.1109/ETECH.2004.1353848
http://dx.doi.org/10.1109/ETECH.2004.1353848
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.2539&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.2539&rep=rep1&type=pdf
http://dx.doi.org/10.11591/telkomnika.v10i7.1566
http://dx.doi.org/10.11591/telkomnika.v10i7.1566
http://dx.doi.org/10.1109/DCABES.2010.9
http://www.advancedclustering.com/hpc-cluster-blog-gtx-vs-tesla
http://www.advancedclustering.com/hpc-cluster-blog-gtx-vs-tesla
http://dx.doi.org/10.1007/978-3-642-04843-2_4
http://dx.doi.org/10.1007/3-540-45417-9_1
http://dx.doi.org/10.1007/3-540-45417-9_1
http://dx.doi.org/10.1016/j.jpdc.2012.04.003
http://dx.doi.org/10.1109/IPDPS.2010.5470477
http://dx.doi.org/10.1109/IPDPS.2010.5470477
http://dx.doi.org/10.1016/j.physa.2006.10.030
http://dx.doi.org/10.1016/j.physa.2006.10.030
http://dx.doi.org/10.1090/S0002-9939-1956-0078686-7
http://dx.doi.org/10.1090/S0002-9939-1956-0078686-7
https://www.jse.co.za/current-companies/companies-and-financial-instruments
https://www.jse.co.za/current-companies/companies-and-financial-instruments

