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The human innate immune system is indispensable for protection against potentially invasive microbial and 
viral pathogens, either neutralising them or containing their spread until effective mobilisation of the slower, 
adaptive (specific), immune response. Until fairly recently, it was believed that the human innate immune 
system possessed minimal discriminatory activity in the setting of a rather limited range of microbicidal or 
virucidal mechanisms. However, recent discoveries have revealed that the innate immune system possesses 
an array of novel pathogen recognition mechanisms, as well as a resourceful and effective alternative 
mechanism of phagocyte (predominantly neutrophil)-mediated, anti-infective activity known as NETosis. 
The process of NETosis involves an unusual type of programmed, purposeful cell death, resulting in the 
extracellular release of a web of chromatin heavily impregnated with antimicrobial proteins. These structures, 
known as neutrophil extracellular traps (NETs), immobilise and contribute to the eradication of microbial 
pathogens, ensuring that the anti-infective potential of neutrophils is sustained beyond the lifespan of these 
cells. The current review is focused on the mechanisms of NETosis and the role of this process in host 
defence. Other topics reviewed include the potential threats to human health posed by poorly controlled, 
excessive formation of NETs, specifically in relation to development of autoimmune and cardiovascular 
diseases, as well as exacerbation of acute and chronic inflammatory disorders of the airways. 

Introduction
Until fairly recently, the protective activities of the human innate immune system, which are highly conserved 
throughout evolution, were thought to be achieved by a limited range of mechanisms with minimal discriminatory 
potential. Predominant amongst these mechanisms are the physical barriers presented by the skin and mucous 
membranes, engulfment and destruction of microbial and viral pathogens by resident and migratory phagocytes, 
and the non-specific antimicrobial activity of various blood and tissue proteins. These mechanisms either prevent 
infection or, in the case of a breach by a pathogen, contain the infection until adaptive (specific) host defences 
are effectively mobilised. Over the last decade, however, a number of significant discoveries have revealed that 
the human innate immune system not only possesses a level of discrimination previously considered improbable, 
but also includes additional, resourceful mechanisms of phagocyte-mediated antimicrobial and antiviral activity.

With respect to pathogen detection, cells of the innate immune system (phagocytes, mast cells, basophils and 
dendritic cells), as well as epithelial cells, have been found to possess various types of pathogen recognition 
receptors which recognise conserved molecular structures broadly expressed on or in microbial and viral 
pathogens. These receptors include the Toll-like receptors, the nucleotide oligomerisation domain-like receptors, 
and the abundant cytosolic microbial and viral nucleic acid sensors, activation of which initiates a potentially 
protective inflammatory response. These receptors have been the subject of several recent reviews.1,2

In 2004, Brinkmann et al.3 described an unusual mechanism by which human blood neutrophils immobilise 
pathogens extracellularly, exposing them to a highly concentrated array of anti-infective proteins. Neutrophils (also 
known as granulocytes or polymorphonuclear leucocytes) are the predominant small circulating phagocytes. 
These cells have an estimated lifespan of 5.4 days in the circulation,4 which is longer when they are exposed to 
anti-apoptotic cytokines. These cells exit the circulation via transendothelial migration and chemotaxis to sites 
of microbial and viral infection where they phagocytose and destroy pathogens via intracellular exposure to 
microbicidal and virucidal reactive oxygen species (ROS), proteases and proteins.

The studies of Brinkmann et al.3 enhanced the body of knowledge on neutrophil function through the discovery that 
these cells also respond to infectious challenges via the formation of neutrophil extracellular traps (NETs). NETs are 
web-like structures composed of decondensed chromatin heavily impregnated with different antimicrobial granular 
proteins which capture, neutralise and kill a variety of pathogens. NETs are produced predominantly by neutrophils, 
but also by other cell types of the innate immune system such as monocytes and macrophages, eosinophils, 
basophils and mast cells, in which the process is termed ETosis. Phylogenetic studies have revealed that ETosis is 
a highly conserved ‘ancient defence weapon, predating the evolution of the coelom’ operative in haemocytes, the 
phagocytic cells of invertebrates.5

NETs form large extracellular barriers to bacterial dissemination, and provide a mechanism for localised 
concentration of effector molecules. Importantly, NET formation has been demonstrated in both the clinical 
and experimental infection settings using immunohistochemistry and spinning disc vital microscopy.6 Several 
strategies to measure NET formation in vitro have also been described, including immunofluorescence and electron 
microscopic procedures, as well as spectrofluorimetric and other methods which detect extracellular DNA and 
associated granule proteins.3 Human neutrophils undergoing NETosis in vitro are shown in Figure 1.

NETs are the topic of this review, which is focused on mechanisms of NETosis and the role of this process in 
host defence, as well as on the potentially harmful consequences of excessive NETosis for the host and possible 
pharmacological control strategies.
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Figure 1:  Fluorescence micrograph showing isolated human neutrophils 
undergoing NETosis. Following activation with phorbol 
myristate acetate (6.25 ng/mL), a potent stimulator of 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, 
and the production of reactive oxygen species, adherent 
neutrophils were exposed, sequentially, to unlabelled polyclonal 
rabbit antibodies, to citrullinated histone H3 residues and to 
Alexa Fluor 488 labelled goat anti-rabbit antibodies, before 
DNA was stained with a nuclear dye (DAPI). DNA is stained 
blue, while neutrophil extracellular traps (NETs), containing 
both DNA and citrullinated histone residues, are stained green. 
Neutrophils which have undergone NETosis, cells in the early 
stages of NETosis, and a non-NETotic neutrophil showing 
intact, multi-lobed nuclear morphology (stained blue), are 
labelled a, b and c, respectively.

Mechanisms of NET formation
Although the exact molecular and biochemical mechanisms involved in 
the formation and release of NETs are incompletely understood, three 
different types of NETotic pathway have been described. The best 
characterised of these pathways is slow and leads to lytic cell death 
over the course of 2–3 h. The second pathway has been described as 
a rapid mechanism (vital), independent of cell lysis, which requires the 
rapid (within minutes) vesicular release of neutrophil nuclear contents.6,7 
Unlike the first two mechanisms of NETosis which involve release of 
nuclear DNA, the third mechanism, which is also non-lytic, involves the 
release of mitochondrial DNA.8

Lytic NETosis, also known as suicidal NETosis, is an active cell death 
related process distinct from either necrosis or apoptosis.9 This process 
requires chromatin decondensation, nuclear envelope disintegration and 
a mixing of nucleic acids and granule proteins within an intracellular 
vacuole. Subsequent release of vacuole contents into the extracellular 
domain is preceded by plasma membrane perforation or lysis. Various 
stages in the process constituting lytic NETosis have been identified. 
The interaction of pathogens and their products with their counter-
receptors on or in neutrophils includes, in addition to the pathogen 
recognition receptors mentioned above, the opsonin receptors FcR 
(receptor for pathogen-bound immunoglobulin G) and CR3 (receptors 
for pathogen-bound complement components C3b and C3bi), which 
promote adherence of pathogens to neutrophils. This interaction, in turn, 
leads to a series of pathogen-activated intracellular signalling events, 
most importantly: (1) activation of the receptor-linked signalling complex 
protein kinase C(PKC)-raf/-MEK-ERK which mediates activation of the 
neutrophil membrane-associated, electron-transporting, ROS-generating 

system, NADPH oxidase10; (2) ROS-mediated activation of intracellular 
signalling pathways converging on the cytosolic transcription factor, 
nuclear factor kappa B (NFκB), which, following nuclear translocation, 
has been proposed to promote NETosis by initiating transcription of 
the peptidylarginine deiminase 4 (PAD4) gene, as well as by blocking 
apoptosis, an alternative pathway of programmed cell death11; and 
(3) receptor-mediated increases in cytosolic Ca2+ via activation of 
phospholipase C, which, in turn, leads to Ca2+-dependent activation 
of PAD4. ROS also promote collapse of both the cytoplasmic granule 
and nuclear membranes, enabling access of cytoplasmic PAD4 and 
granule proteins to chromatin. PAD4 mediates histone hypercitrullination 
(conversion of protein arginine residues to citrulline), a key event 
in chromatin decondensation12,13, which is facilitated by the limited 
proteolysis of nuclear histones mediated by granule enzymes – neutrophil 
elastase and myeloperoxidase (MPO) – operating in unison3,14. While 
ROS appear to promote the rupture of both the cytosolic granule and 
nuclear membranes, a recent study has also implicated the involvement 
of the granule antimicrobial polypeptide LL-37 (which consists of 2 
N-terminal leucines and a total of 37 amino acids).15 LL-37 is a cationic 
amphiphilic polypeptide of the cathelicidin family which binds to anionic 
membrane phospholipids promoting membrane disruption. The nuclear 
membrane appears particularly vulnerable to the disruptive actions 
of LL-37. In addition, the cationic properties of LL-37 also promote 
binding of the polypeptide to neutrophil DNA, increasing resistance to 
degradation of NETs by microbial nucleases.16 

The proposed mechanism of lytic NET formation based on current 
knowledge is shown in Figure 2.

The concept that alternative NETosis pathways exist, in addition to the 
lytic-cell death pathway, has been advanced by several groups.6,8,17,18 
One such pathway is vital NETosis. Vital NETosis is a rapid process 
whereby cell viability and function are retained in the context of controlled, 
incremental discharge of nuclear material, following exposure of 
neutrophils to various microorganisms and their products, and appears 
to be a generalised response against various classes of microbial 
pathogens.18,19 In this setting, neutrophils are stimulated to ‘release 
NETs via nuclear envelope bleb formation and vesicular exportation, 
preserving the integrity of the plasma membrane’.6,20 Importantly, and 
also in contradistinction to lytic NETosis, the requirement for involvement 
of NADPH oxidase in vital NETosis is variable, with increases in cytosolic 
calcium seemingly adequate in the case of some stimuli such as 
bacterial pore-forming toxins6 and calcium ionophores7, or alternatively 
via ROS-independent activation of NFκB21. Unlike lytic NETosis, only 
20–25% of the neutrophil population undergoes NETosis on exposure 
to microbial pathogens or their products in vitro.20 This observation is 
not only consistent with the existence of a sub-population of neutrophils 
highly specialised for the performance of vital NETosis, but also suggests 
that vital, as opposed to lytic, NETosis is the more physiologically 
relevant of the two processes.20

The formation of mitochondrial-derived NETs is also a type of vital 
NETosis with variable dependence on activation of NADPH oxidase 
according to the nature of the cell activator. Although the existence of 
mitochondrial DNA-containing NETs has been demonstrated in vitro, less 
is known about its role in host defence which is likely to be limited by 
the absence of histones.22,23 Interestingly, mitochondrial DNA has been 
found to induce NET formation, consistent with a role in the amplification 
of NETosis.22

NET constituents
The DNA scaffolding of NETs is provided by decondensed nuclear 
chromatin. A variety of NET-associated proteins, predominantly highly 
negatively charged histones, is arranged on this scaffolding. Via their 
strong positive charge, histones facilitate the adhesion to, as well as 
the sequestration of, microbial and viral pathogens24 and also confer 
bactericidal activity, as does DNA.25 The remaining NET-associated 
proteins comprise granule, cytoplasmic and cytoskeletal proteins, as well 
as metabolic enzymes.24 The concept of a core NET-associated proteome 
that remains constant regardless of the specific agent responsible for 
NET induction, has been proposed by Rahman and Gadjeva26. The core 
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Figure 2:  Basic mechanism of lytic NETosis. Exposure of neutrophils to pathogens or their cell-wall and intracellular components bound to pathogen 
recognition receptors (PRRs) or receptors for antibody (Fc) or complement components is linked to activation of: (1) the protein kinase C (PKC)/
raf/erk kinase (MEK)/extracellular signal regulated kinase (ERK) intracellular signalling axis, which, in turn, activates the membrane-bound, 
electron-transporting, reactive oxygen species (ROS)-generating complex, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; and 
(2) the enzyme phospholipase C which cleaves membrane phosphatidylinositol to generate diacylglycerol (which also activates NADPH oxidase) 
and inositol triphosphate, which mobilises calcium (Ca2+) from intracellular stores. ROS initiate activation of the latent cytosolic transcription 
factor, nuclear factor kappa B (NFKB), which translocates to the nucleus and induces, amongst others, the gene encoding the Ca2+-dependent, 
pro-NETotic enzyme peptidylarginine deiminase 4 (PAD4). ROS also promote disruption of the membranes of cytosolic granules leading to release 
of granule antimicrobial proteins and enzymes, including LL-37, which act in concert with ROS to augment nuclear membrane disintegration, while 
elastase and myeloperoxidase (MPO) also mediate chromatin decondensation. Nuclear membrane disruption enables PAD4 to access the nucleus, 
which, in turn, triggers the series of events culminating in neutrophil extracellular trap (NET) formation. This involves PAD4-mediated citrullination 
of nuclear histones followed by chromatin decondensation, and intermingling of nuclear and granule antimicrobial components in the cytoplasm to 
form a matrix which is released extracellularly as NETs.
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NET-associated proteome is made up of a combination of 19 constituent 
proteins, arranged in association with a variety of decorative proteins. 
The fact that the protein structure of NETs exhibits a constant element 
to its composition supports the hypothesis that NET formation is indeed 
an innate immune system response which is non-specific.26 The major 
antimicrobial components of NETs are summarised in Table 1.

Beneficial effects of NETosis
Role in host defence
NETs have been shown to degrade microbial and viral virulence factors 
and to restrict pathogens by forming a physical barrier that prevents 
dissemination. Examples of bacterial, fungal and protozoal parasitic 
pathogens which are ensnared in NETs are shown in Table 2. While 
some bacterial pathogens such as Pseudomonas aeruginosa27, Borrelia 
burgdorferi28 and Burkholderi pseudomallei29 are killed following 
entrapment in NETs, others appear less vulnerable, probably as a 
result of the production of anti-adhesive surface structures such as 
polysaccharide capsules and/or NET-degrading nucleases, as indicated 
in Table 2.24,27-47 

Neutrophils appear to be particularly adept at sensing microbial size, 
with large microorganisms the most effective inducers of NETosis.31 
For example, in the case of Candida albicans, the yeast responsible 
for most fungal infections in humans, NETs are effectively induced 
by this pathogen in both the yeast and hyphal forms.48 Protozoa such 
as Toxoplasma gondii, Plasmodium falciparum and Leishmania spp. 
have also been shown to possess the requisite signals to trigger NET 
formation, which, in some cases, may lead to the death of entrapped 

parasites, as well as interference with the invasion of host cells. Some 
microbial pathogens, such as the opportunistic Gram-negative bacterium 
Acinetobacter baumannii and the fungus Cryptococcus neoformans, do 
not appear to activate NETosis, which in the case of the latter has been 
attributed predominantly to the ability of the polysaccharide capsule to 
prevent the requisite signalling mechanisms.49,50

Based on observations of pathogens such as Staphylococcus aureus 
and Streptococcus pneumoniae, which withstand NETs, it has been 
proposed that the primary function of NETs is to immobilise, weaken 
and expose infective agents to other antimicrobial cellular and humoral 
components of the innate immune system, including tissue macrophages 
and the proteins of the complement system respectively.51-53 An example 
of this type of cooperation involves the interaction of neutrophils and 
macrophages in the eradication of the bacterial pathogen Mycobacterium 
tuberculosis. This pathogen has also been reported to induce NETs in 
which it is trapped extracellularly, but remains viable. Entrapped bacilli 
are then engulfed by alveolar macrophages, the primary cell type 
involved in the eradication of M. tuberculosis.30 

With respect to the role of NETs in antiviral host defence, neutrophils have 
been shown to detect HIV-1 via interaction with pathogen recognition 
receptors which recognise viral RNA. This detection in turn triggers NET 
formation, leading to NET-mediated inactivation of HIV-1, resulting from 
exposure to MPO-derived oxidants and α-defensins.54 This response 
may, however, be attenuated via the release of the anti-inflammatory 
cytokine, interleukin-10, from bystander HIV-infected dendritic cells, 
which, in turn, inhibits NET formation.54

Table 1:  A summary of the major antimicrobial constituents of neutrophil extracellular traps

Constituent Origin Anti-infective spectrum

DNA Cell nucleus Broad-spectrum activity

Histones Cell nucleus Broad-spectrum activity

Myeloperoxidase (MPO) Neutrophil primary granules
Broad-spectrum when combined with 
hydrogen peroxide

Neutrophil elastase (NE) Neutrophil primary granules Serine protease with broad-spectrum activity

Proteinase 3 (PR3) Neutrophil primary granules Serine proteinase with broad-spectrum activity

Cathepsin G Neutrophil primary granules Serine proteinase with broad-spectrum activity

α-Defensins Neutrophil primary granules
Broad-spectrum activity; also known as human 
neutrophil peptides 1–4 (Hnp 1–4)

Azurocidin (cationic antimicrobial peptide-37) Neutrophil primary granules
Broad-spectrum antimicrobial polypeptide, also known 
as cationic antimicrobial peptide-37

Bactericidal permeability-increasing protein (BPI) Neutrophil primary granules
Selective activity against Gram-negative 
bacterial pathogens

Lysozyme Neutrophil primary, secondary and tertiary granules
Selective activity against Gram-positive 
bacterial pathogens

LL-37 (cathelicidin) Neutrophil secondary granules Broad-spectrum activity

Lactoferrin Neutrophil secondary granules Broad-spectrum activity

Calprotectin Neutrophil cytosol
Selective activity against the yeast Candida albicans and 
Aspergillus fungal species

Sources16,23-25,37
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Although the exact role of NETs in the host response to infection remains 
to be convincingly elucidated, the increased susceptibility of patients 
with chronic granulomatous disease (CGD) to infection is noteworthy 
in this context. This condition is an inherited primary immunodeficiency 
disorder caused by a complete absence of NADPH oxidase and failure 
of phagocytes to generate ROS, and consequently NETs. The severe 
impairment of neutrophil protective activity as a result of the combined 
absence of production of antimicrobial ROS and NETs causes the 
patients to suffer from severe and often life-threatening infections.9 
However, NET production by neutrophils in chronic granulomatous 
disease is responsive to activation by ROS-independent pro-NETotic 
mechanisms.21 In addition, transient and acquired abnormalities of NET 
formation have also been demonstrated in human neonates and the 
elderly, respectively – a previously unrecognised deficit in extracellular 
bacterial killing which may underpin age-associated vulnerability to 
microbial and viral infection.55,56

In addition, the increased susceptibility of humans with stable or transient 
severe neutropenia for development of disseminated fungal infections 
has been attributed to attenuation of ‘trapping’ by NETs.20 

Evasion of NETs by pathogens
Several strategies have been described that enable pathogens to 
evade NET-mediated immobilisation and/or killing by NET-associated 
proteins, many of which are listed in Table 2. These strategies include 
the production of nuclease enzymes that degrade the DNA backbone of 
the NET structures by various types of microbial pathogens, including, 
but not limited to, pathogens of the Streptococcus and Staphylococcus 
genera. In addition, the acquisition by microorganisms and viruses 
of molecular patterns that interfere with pathogen recognition by 
pathogen recognition receptors has also been reported to attenuate 
NET formation.34-36 The acquisition of a cell capsule, for example, is of 
particular benefit in evading NET-mediated trapping of organisms, by 
altering the surface charge of bacteria to neutral and thereby negating 
the electrostatic attraction posed by positively charged NET fibres and 
histone residues.36

The involvement of NETs in the pathophysiology of disease
Despite beneficial effects in host defence, NETosis may occur at the 
expense of injury to the host.57 Inappropriate and/or excessive NET 

Table 2:  Examples of microbial pathogens which induce NETosis and their escape strategies

Pathogen Type
Protective actions of neutrophil 

extracellular traps (NETs)
Escape/survival mechanisms

Pseudomonas aeruginosa Bacterium
Entrapment and killing of some strains, 
others escape

Shedding of outer membrane vesicles which compete 
with NET binding sites, as well as acquired resistance

Borrelia burgdorferi Bacterium Entrapment and killing None evident

Burkholderia pseudomallei Bacterium
Entrapment and killing of strains with 
low capsule expression

Evasion by capsular polysaccharides

Staphylococcus aureus Bacterium Entrapment only
Subversion of macrophage-mediated uptake and killing 
of NET-associated bacteria by production of pro-
apoptotic deoxyadenosine

Streptococcus pneumoniae and other 
streptococci species

Bacterium
Entrapment of strains with low 
capsule expression

Capsule polysaccharide-mediated interference with 
binding to NETs and escape as a result of production of 
microbial nucleases

Neisseria meningitidis Bacterium
Entrapment resulting in 
decreased proliferation

Shedding of competitive outer membrane vesicles and 
adaptive cell surface modifications

Neisseria gonorrhoea Bacterium
Entrapment and limited 
bactericidal activity

Escape as a result of subsequent production of a 
thermonuclease and inhibition of production of pro-
NETotic reactive oxygen species by neutrophils

Vibrio cholera Bacterium
Entrapment and limited 
bactericidal activity

Escape as a result of subsequent production of two 
microbial nucleases

Mycobacterium tuberculosis Bacterium Entrapment without killing
Resistance to killing mediated by the thick, waxy outer 
coat of the pathogen

Candida albicans Yeast Entrapment and killing Escape reported, but mechanisms unknown

Aspergillus species Fungus Entrapment and killing No escape mechanisms described

Leishmania species Protozoal parasite Entrapment and limited killing
Escape mediated by release of 3’-nucleotidase/
nuclease activity

Toxoplasma gondii Protozoal parasite Entrapment and killing Escape mechanisms not yet identified

Plasmodium falciparum Protozoal parasite Entrapment and limited killing Escape mechanisms not yet identified

Sources24,27-47
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formation has been documented in the following autoimmune, cardio-
vascular and pulmonary diseases. 

The role of NETs in autoimmune diseases
Systemic lupus erythematosus
Systemic lupus erythematosus (SLE) is a complex and heterogeneous 
disease, with patients displaying a variety of symptoms of which 
glomerulonephritis is particularly serious.57,58 This condition has a 
definite female preponderance and a prevalence which seemingly 
varies according to race. The hallmark of SLE is the overproduction 
of autoantibodies against a range of nuclear antigens including, not 
only DNA and histones, but also neutrophil granule proteins.57 These 
autoantibodies are believed to contribute significantly to disease 
pathogenesis. In this context, several studies have reported that the 
ability to degrade NETs was reduced in a subset of patients with a severe 
form of SLE which was associated with both glomerulonephritis and the 
presence of circulating autoantibodies reactive with various constituents 
of NETs.59,60 Mechanistically, disassembly of NETs in the physiological 
setting is mediated by the enzyme serum endonuclease DNase1, 
interference with which is likely to favour persistence and exaggerated 
immunogenicity of NETs.60 In this setting, binding of anti-NET antibodies 
to NETs has been reported to prevent access of DNase I to NETs. The 
consequence is impairment of DNase1 function, resulting in failure to 
dismantle NETs, correlating with renal involvement in SLE.60 As alluded 
to earlier, it appears that NETosis in SLE also involves a subset of 
neutrophils known as low density granulocyes.61

Rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic, systemic autoinflammatory disease 
which primarily affects the synovial joints. It occurs at high frequency 
(1–3%) in the general population with a female preponderance and, like 
SLE, is associated with high morbidity and mortality. The majority of 
RA patients present with high levels of circulating antibodies to citrullinated 
proteins known as anti-citrullinated peptide antibodies (ACPAs) which 
are serodiagnostic for RA. Although a clear mechanistic relationship 
between dysregulation of NETosis and production of ACPAs remains 
to be established, it is noteworthy that neutrophils from patients 
with RA exhibit exaggerated NETosis in the circulation, the skin and 
rheumatoid joint when compared with neutrophils from healthy controls 
and patients with osteoarthritis.62,63 Other supporting evidence includes: 
(1) the finding of a significant positive correlation between NET formation 
and serum levels of anti-citrullinated peptide antibodies, as well as with 
other circulating biomarkers of inflammation and neutrophil activation; 
(2) a report that citrullinated histone 4, a component of NETs, is reactive 
with ACPAs; and (3) the finding that NETs act as strong stimulants of 
fibroblast-like synoviocytes (cells that invade cartilage in RA).62 Taken 
together, these findings appear to implicate dysregulation of NETosis in 
the pathogenesis of RA which, in turn, may lead to the identification of 
novel targets for the treatment of this and other diseases.62

Small vessel vasculitis
Small vessel vasculitis is a chronic autoinflammatory condition in 
which small blood vessels show necrotic inflammation. The condition 
is associated with the presence of anti-neutrophil cytoplasmic 
autoantibodies (ANCAs). The main targets for ANCAs are the granule 
enzymes MPO and PR3 (proteinase 3).64 Kessenbrock et al.65 observed 
that the binding of ANCAs to neutrophils resulted in activation of 
NETosis. They also demonstrated typical components of NETs present in 
kidney biopsies of patients with small vessel vasculitis. The NETs were 
decorated with the autoantigens MPO and PR3. Deposition of NETs in 
inflamed kidneys suggests that NET formation plays a pathogenic role 
in autoimmune small vessel vasculitis by presenting autoantigens to the 
immune system with resultant vascular damage.65,66 

The role of NETs in deep vein thrombosis
Deep vein thrombosis (DVT) is the formation of a blood clot (or 
thrombus) in a deep vein, predominantly in the legs. DVT can be 
triggered by disturbances in venous blood flow, activation or dysfunction 

of the vascular endothelium, and hypercoagulability. NETs provide a new 
link between innate immunity and hypercoagulability,67 stimulating the 
coagulation process by activating platelets, the coagulation cascade and 
the vascular endothelium.68 NETs provide a scaffold for platelet and red 
blood cell adhesion and also concentrate effector proteins involved in 
thrombosis.68 It is speculated that NET-associated enzymes may enhance 
coagulation indirectly through proteolytic degradation of tissue factor 
pathway inhibitor, the major trigger protein in the onset of blood clotting.69 
Histones have also been shown to increase thrombin generation, 
causing platelet activation and coagulation.70 In the experimental setting, 
administration of DNase1 to mice was found to promote disassembly of 
NETs with resultant suppression of DVT enlargement,71,72 underscoring 
the importance of NETS in the pathogenesis of DVT.67 The presence of 
NETs, according to the detection of citrullinated histone H3 positive cells, 
has also been described in human venous thrombi.73 

NETs in lung disease
NETs may also contribute to the pathogenesis and severity of several 
inflammatory lung conditions, including cystic fibrosis74, acute lung 
injury and acute respiratory distress syndrome75, severe asthma76 and 
chronic obstructive pulmonary disease77.

Acute lung injury and acute respiratory distress syndrome
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) 
represent a spectrum of lung diseases resulting from direct and indirect 
insults to the lung. These insults may be a result of infectious or sterile 
causes.78 The disease process is characterised by a disruption of the 
endothelial-epithelial barriers, alveolar damage, pulmonary oedema and 
various degrees of respiratory failure.78 ALI/ARDS is characterised by 
an influx of neutrophils into the pulmonary capillaries, with retention of 
hyperreactive neutrophils in the damaged vasculature.79 NETs are able 
to contribute directly to the pathology of ALI/ARDS by inducing lung 
epithelial cell death.66

NETs in cystic fibrosis 
Cystic fibrosis (CF) is a lifelong inherited condition primarily affecting 
the lungs and digestive tract, with prevalence varying according to race, 
and seemingly more common in those of North European descent. 
CF patients develop chronic lung infections associated with airway 
obstruction mediated by viscous and insoluble mucus secretions.80 
In such patients, chronic bacterial colonisation of the airways develops, 
usually with the intransigent bacterial pathogens S. aureus and 
P. aeruginosa. Sputum viscosity is caused by extracellular DNA released 
from invading inflammatory cells, much of which is believed to originate 
from NETosis. This contention is supported by the observation that 
neutrophil elastase and MPO, which are found in high concentration in 
CF sputum, are bound to DNA, a key molecular signature of NETs.81 
If detached from NETs, neutrophil-derived proteolytic enzymes may also 
damage components of pulmonary connective tissue, especially elastin, 
compromising airway elasticity and function which may underpin the 
correlation between the magnitude of NET formation in the airways of CF 
patients and the degree of impairment of lung function.74,82  

Pharmacological control of NETosis
Given the apparent involvement of excessive NETosis in the development 
of autoimmune and cardiovascular diseases, as well as in exacerbation 
of CF, pharmacological regulation of aberrant NETosis has definite 
therapeutic potential. This potential has yet to be realised, however, due 
in large part to the relatively recent discovery of NETosis, as well as the 
current limited insights into the diversity of the molecular mechanisms 
underpinning this process. Possible strategies include: (1) inhibition of 
the generation of pro-NETotic ROS, or, alternatively, neutralisation of 
ROS using oxidant-scavengers such as N-acetylcysteine or ascorbic 
acid;11 (2) inhibitors of the activation of NFκB such as ascorbic acid 
and acetylsalicylic acid (aspirin), both of which have shown promise 
in experimental animal models of excessive NET formation11,83; and (3) 
inhibitors of PAD4 which are currently in pre-clinical development84. 
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With respect to alternative therapies, inhaled recombinant human DNase 
is widely used in the treatment of CF, primarily as a strategy to degrade 
neutrophil-derived DNA, a significant contributor to the viscosity of 
airway mucus.85

Conclusions
NETs appear to increase the versatility and potency of the anti-infective 
armamentarium of neutrophils, as well as several other cell types of the 
innate immune system, possibly prolonging protective activity beyond 
cell death, thereby ensuring maximal utilisation of antimicrobial granule 
proteins. However, several important questions relating to the exact role 
of NETs in host defence remain incompletely understood. Remaining 
avenues for exploration include: (1) determining the biological relevance 
of the various types of NETosis; (2) unravelling the precise molecular 
and biochemical mechanisms underpinning these processes; and (3) 
characterising cooperative, beneficial interactions of NETosis with other 
cellular and humoral components of the innate and adaptive immune 
systems. As with other indiscriminate phagocyte-derived antimicrobial 
systems, such as the generation of tissue damaging and carcinogenic 
ROS, the extracellular release of nuclear material and enzymes such 
as elastase and MPO during NETosis presents the potential threat of 
development of autoimmune, cardiovascular and other disorders. 
Balancing NETosis in favour of host defence using pharmacological and 
other strategies represents an ongoing challenge.
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