
1 Volume 109 | Number 11/12
November/December 2013

South African Journal of Science  
http://www.sajs.co.za

Research Article Prediction of distribution of soil forms and associations
Page 1 of 5 

Prediction of soil distribution on two soilscapes in 
land type Dc17 east of Bloemfontein, South Africa

The predictive nature of digital soil mapping makes it a labour- and cost-effective way of facilitating soil 
surveys. A digital elevation model was used to generate terrain attributes that can be used to infer the 
distribution of soil associations relative to the topography. Two study areas – Gladstone and Potsane – 
in the Free State Province of South Africa were considered. Slope, aspect, contour and plan curvature, 
topographic wetness index and topographic morphological unit were used to develop a model for predicting 
soil associations. Discriminant analysis was employed to develop the model. The model was trained on 
data obtained from Gladstone and validated on data from Gladstone and Potsane. Predicting soil form 
was unsatisfactory. Prediction done on soil associations, with soils grouped as deep, shallow and valley-
bottom soils (criteria closely related to the suitability for in-field rainwater harvesting), achieved acceptable 
improvement in prediction accuracy. For Gladstone, when analysis was done using equal prior probability, 
accuracy percentages of 56.9%, 51.5% and 58.3% were found for calibration, cross-validation and areas 
suited to in-field rainwater harvesting, respectively. With prior probability set in accordance to sample 
frequency, the accuracy percentages were improved to 83.1%, 80.0% and 94.6%, respectively. In Potsane, 
the prediction accuracy percentage was low (38.23%) with equal prior probability but markedly improved 
(67.65%) when prior probability was similar to sample frequency. These results support the validity of the 
statement that the predictive nature of digital soil mapping makes it a labour- and cost-effective way of 
facilitating soil surveys.

Introduction
Predictive soil mapping (PSM), as part of digital soil mapping, is an important contribution to soil surveying. 
In practice, PSM is associated with digital soil mapping which is geared towards producing digital maps of soil 
types and soil properties. This procedure relies heavily on computer support and different software applications 
to process the observations (data) that are used as a basis of inference. As this procedure is still in its infancy, no 
formal delineation of scope is available, but definitions have nevertheless been given by practitioners. Scull1 defined 
PSM as ‘the development of a numerical or statistical model of the relationships among environmental variables 
and soil properties, which is then applied to a geographic database to create a predictive map’.

A critical review of conventional soil surveying reveals that it is often more costly and labour and time consuming 
than it need be.2 Webster3 suggested that, where observations are excessively expensive and time consuming, 
more easily observed characteristics and cheaper means of making observations should be devised. PSM uses 
proxy and ancillary information to infer soil classes, properties and distribution in the landscape, which decreases 
costs. In addition, PSM uses variables that can easily be quantitatively measured, thereby allowing predictions to 
be done consistently and objectively. Another advantage of PSM is its role in facilitating soil mapping in contrast to 
the polygon delineations of traditional soil surveys. PSM uses geographical data types in which the surface of the 
study area is divided into small grids and the value allocated to every grid cell (pixel) can be individually recorded 
and depicted. PSM thereby also provides a means of controlling the resolution of the map produced.

The work that pioneered the use of digital applications based on pedological theory was done by Jenny4. He 
focused on the process of soil formation (pedogenesis), recognised the role of soil forming factors, and expressed 
this process in the form of mathematical equations (Equations 1 and 2). At the time, and for decades to follow, 
an acceptable way of quantifying the factors was not available. The equations nevertheless served as a pad for 
launching predictive soil mapping research. The important formulation done by Jenny4 not only described soil type 
as a function of the five soil forming factors (Equation 1), but also introduced the concept of single factor variation 
to observe the influence of a single factor in soil formation (Equation 2). For example, Equation 2 below shows 
soil variation as a function of climate. Jenny’s concept provided the foundation for the assumption made in PSM. 

S = f(cl, o, r, p, t, . . .) and Equation 1 

S = f(cl) o, r, p, t, . . . Equation 2

where S represents the soil properties (type), cl is the climate, o is the organisms, r is the topography, p is the 
parent material and t is time.

The major assumption that stems from the above equations, which is reflected in most PSM models, is that 
soil pedosequences in a particular relatively small area tend to be similar. The underlying assumption is that in 
a relatively small area there is not sufficient variation in the soil forming factors (apart from topography) to bring 
about soil variation. This is presumably what Hudson5 refers to as the ‘landscape paradigm’, which plays such an 
important role in soil surveys.

Although Equation 1 represents the theory of soil formation explicitly, it is mathematically unsolvable.6 For this 
reason no remarkable advances were made soon after Jenny’s publication in 1941.4 It was only during the 1960s 
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that research in pedometrics started to expand.7 This development was 
fuelled by the introduction of new statistical techniques in soil science 
and spatial know-how. McBratney et al.8 noted that this shift to include 
spatial factors was necessitated for two reasons: a need to map the 
results and to quantify the factors in order to use Jenny’s equations for 
prediction purposes.

Because of the difficulty of quantifying the soil forming factors, ways of 
modelling these factors became important. Among the five soil forming 
factors, direct measurement of climate and relief is relatively easy. Parent 
material can easily be expressed nominally or as a dummy variable (i.e. 
as absent or present). The influence of organisms and time are not easy 
to measure directly, but surrogate or proxy variables can be used to 
represent them. In cases where such quantification is very difficult, 
approximation by local experts who have good knowledge of the area 
can be used.9

As one of the objectives of PSM is to solve the difficulty of obtaining data 
during surveying, using readily available data sources is a valid option. To 
serve this objective, easily measured attributes like topographic, climatic 
and geological parameters have been used to model the relationship 
between these environmental attributes and the soil. Zhu et al.9 reported 
that the choice of environmental variables can be made depending 
on data availability and significance in impacting pedogenesis, which 
means that, amongst the available representative variables, the ones 
that provide ease of measurement and use are utilised to model. Such 
variables can then be used to model the relationship with the soil and as 
the basis for prediction.

Much of the work that has been done focused on modelling of variation in 
relief in relation to variation in soil. Scull et al.6 provided a list of research 
done on digital soil mapping. Among the listed studies, 15 of them used 
terrain attributes to model the relationship between the environment 
and the soil. Of those 15 studies, 8 used terrain attributes only. This 
wide use of terrain attributes to model the relationship between soils 
and their environment accentuates the significance of terrain attributes 
in explaining pedogenesis.

Crop soil suitability criteria, relevant to similar soils, should be related 
to local soil forming factors, of which topography is dominant. In this 
study, it was hypothesised that terrain attributes could be used to 
predict functionally similar soil distribution within a particular land type. 
Thus, the objective of this study was to predict the spatial distribution 
of functional soil associations within a selected soilscape of land type 
Dc17 (a land type in which duplex soils are dominant) with an acceptable 
level of accuracy. This predictive procedure can play a major role in land 
evaluation for dryland agriculture with well-defined soil requirements, for 
example in-field rainwater harvesting (IRWH).10,11 The need to improve 
the productivity of marginal cropland in South Africa, its importance with 
regard to subsistence farmers, and the value of IRWH for contributing to 
the solution of this problem, have recently been accentuated.12,13

Method
The study area is located in land type Dc17, in the Free State Province 
about 90 km east of Bloemfontein in the vicinity of Thaba Nchu.14 Within 
this land type two separate soilscapes were studied – Gladstone and 
Potsane. Data from Gladstone was used to develop, train and validate 
the developed model. Gladstone covers an area of 2721 ha, which is 
currently mainly used for grazing. Soil type data from Potsane were 
also used to validate the model. The area from which the validation 
data points were collected covers 140 ha of Potsane. As both areas 
are located in the same land type, they share the same macroclimate 
and macrogeology.

Soil survey
A soil survey procedure specifically designed to meet the objective of 
the survey was used on Gladstone and Potsane. The objective of the 
survey was to delineate areas that were ‘well suited’, ‘moderately suited’ 
and ‘unsuitable’ for IRWH. Soil depth was the main criterion regarding 
suitability among soils of selected forms. Soil pits (TPs) on carefully 
selected traverses (Figure 1) provided the needed information about 

the soil forms, whereas the needed information about soil depth was 
obtained from penetrometer measurements at 100-m intervals. GPS 
readings of every TP were recorded for the purpose of mapping and 
further spatial analysis. Profiles were properly described and soil forms 
identified according to the South African soil classification system.15
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Figure 1: Map showing the Gladstone soilscape and the distribution of 
soil pits within this soilscape.

GIS and statistical modelling
A digital elevation model (DEM) of the study area was derived from a 
Shuttle Radar Topography Mission of 3 arc sec, which was resampled to 
30-m by 30-m pixels using an auxiliary topo-map. The DEM was used 
to generate terrain attributes, i.e. slope (percentage), aspect, profile 
and plan curvature, flow direction and flow accumulation. The last two 
attributes and slope were used to calculate wetness index as follows16:

Wetness index= ln (As/tanß), Equation 3 

where As is the upslope area (m2) and ß is the slope in degrees.

In calculating the wetness index, the upslope area was calculated by 
using flow accumulation (number of contributing pixels) multiplied by 
the pixel (grid) size of the raster. In so doing and to avoid a ‘no-data’ 
error caused by computation of the natural logarithm of zero, where the 
number of contributing pixels is zero, a value of 1 was added to every 
pixel. With this procedure, the minimum area is a single pixel.

The terrain morphological unit (TMU) was also derived from the DEM 
by applying expert knowledge and the utilisation of specialised mapping 
and three-dimensional visualisation software, ‘3dMapperTM’.17

In order to utilise the point information obtained from the soil survey, 
each soil pit observation was plotted using coordinates obtained from 
the GPS reading. Initially, the relief characteristics that were derived 
from the DEM were calculated as surfaces (raster data sets). All the 
terrain attributes were treated with a smoothing technique in order to 
reduce the significance of anomalous cells.18 The smoothing technique 
(a neighbourhood tool in ArcGIS) used a low-pass filter that worked on 
a pixel by three pixels basis. The statistics of the raster data set before 
and after smoothing showed that the minimum, maximum, average 
and standard deviation remained the same. With the help of the points 
representing soil pit observations, the terrain attribute values for each 
point were extracted and stored in a database on which further statistical 
analysis was performed. 

Different statistical methods were considered to model the relationship 
between terrain attributes and soils. Discriminant analysis was found to 
be appropriate and was thus used in the study. Discriminant analysis 
has an advantage over the other techniques in that the dependent 
variable does not need to be continuous, and therefore discrete variables 
like soil type can be analysed. Basically, discriminant analysis finds a 
set of prediction equations that decide group membership based on 
independent interval variables. In this study, discriminant analysis was 
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used particularly to find a decision rule in which soil association (or 
a group of soil types) can be predicted based on terrain attributes at 
a point.

In developing the discriminant functions, soil type (soil form) was used 
as the dependent variable (grouping variable), and aspect, slope, profile 
curvature, plan curvature, wetness index and TMU were used as the 
independent variables. Of the 140 TPs, 6 were excluded from analysis to 
avoid anomalies and 134 were used as the training data in the analysis. 
Each TP can be considered as a sample in statistical terms. A SASTM 
statistical package was used to analyse the data obtained from GIS using 
discriminant analysis. Prior probabilities were used as an indication of 
prior knowledge of the distribution of the soil. The analysis resulted in 
a discriminant function (or linear equation). This equation calculates the 
degree of likelihood (posterior probability) of each data point belonging 
to each soil class. A TP was assigned to a soil class for which it had 
the highest posterior probability. A classification matrix was constructed 
to determine the percentage of associations correctly classified. The 
percentage of samples correctly classified (the hit ratio) was calculated 
by dividing the number of samples correctly classified by the total 
sample frequency.

To further the explanation relevant to the purpose of the study, the 
soil types were combined into appropriate associations. Three soil 
associations were established based on the properties shared by the 
soil types. The first soil association included the ‘shallow soils’ (or 
lithosols): Glenrosa (Gs) Mayo (My) and Swartland (Sw), with depths 
of 500–700 mm. The second association consisted of the ‘deep soils’: 
Arcadia (Ar), Bonheim (Bo), Rensburg (Rg), Sepane (Se), Valsrivier 
(Va) and Swartland (Sw), with depths of more than 700 mm. The third 
association included the ‘valley-bottom soils’: Dundee (Du) and Estcourt 
(Es). Soil types which did not fit into the above categories were excluded 
from the analysis. The above associations were included as dependent 
variables and slope, aspect, plan curvature, profile curvature, wetness 
index and TMU as independent variables in the discriminant analysis. As 
with the previous discriminant analysis, the posterior probability for each 
TP was calculated, a classification matrix was constructed, and the hit 
ratio was computed.

Results of the discriminant analysis conducted on these soil associations 
were further validated in three phases. Firstly, cross validation (‘leave one 
out’) was conducted on the same set of data that was used to develop 
the discriminant functions. Taking one sample out at a time, the group 
to which this sample belonged was predicted using the remaining set. 
Secondly, the discriminant function was tested on the same study area 
but with new data sets of samples taken randomly on areas delineated 
as suitable for IRWH by an expert. Thirdly, the discriminant analysis was 
tested on different data sets from another study area – Potsane – which 
was in the same land type.

Results and discussion
The class level information (Table 1) reveals the make-up of the TP’s used 
for calibration. The information obtained from the classification matrix 
is also summarised in Table 1. In the first instance of the discriminant 
analysis run, the chance of encountering any of the soils was set to 
be equal by assigning them the same prior probability. Thus the main 
determinant in this instance was the discriminant function derived in the 
process. Although there are TPs correctly identified for each soil class, 
the overall hit ratio was 30.6%. This percentage was further reduced in 
the cross validation to 20.1%. From the cross validation result (Table 1), 
the soil types that made it to the category of correctly classified were 
classes with good representation (i.e. classes with relatively higher 
frequency): Ar, Bo, Es, My, Rg, Se and Sw. 

The last two columns of Table 1 show the prediction results in which 
prior probability was set similar to sample proportion. This selection 
resulted in an increase in the hit ratio. This setting of prior probability 
can be used if the sampling is considered to be representative of the 
actual distribution. Here it should be noted that the sample proportion did 
provide more information than the plain assumption that ‘all soil classes 
had the same probability of occurrence’. Thus, with prior probability set 

to sample proportion, a hit ratio of 49.3% was achieved on the calibration 
data, which decreased to 44.8% when cross validation was conducted 
on the training data.

Table 1: Class frequency and percentage of samples correctly classified

Soil class Frequency

Frequency of correctly classified soil pits

Equal prior probability Proportional to sample

Training
Cross-

validation
Training

Cross-
validation

Ar 7 2 1 1 0

Bo 11 2 2 0 0

Du 1 1 0 0 0

Es 7 4 2 2 1

Gs 2 1 0 0 0

My 4 1 1 1 0

Rg 12 4 3 1 1

Se 49 10 9 40 39

Ss 4 2 0 0 0

Sw 33 12 9 21 19

Va 3 1 0 0 0

Va/Se 1 1 0 0 0

Total 134 41 27 66 60

Percentage of the total 30.6% 20.1% 49.3% 44.8%

Despite this improvement, the hit ratio was still below 50%. A closer 
study of the classification matrix for soil type revealed which samples 
were classified into which class. This revelation made it possible to 
regroup the soil types into the groups defined in the procedure in a way 
that facilitated investigation of soil distribution prediction in relation to 
land-use requirements, in this case suitability for IRWH.

Prediction conducted on associations of soil types brought the level of 
accuracy to an acceptable range. With no prior knowledge regarding 
the proportion of the soil associations, i.e. prior probability set equal for 
each association, 56.9% of the calibration data was correctly classified. 
The cross validation done on the training data supported the result with a 
similar score – 51.5%. As additional information regarding the suitability 
to IRWH was available from expert analysis, extra points were used to 
validate the result. On the samples extracted from areas suitable for 
IRWH, 58.3% were correctly classified.

The TP samples provided some information about frequency of soil type 
occurrence. To utilise the information carried by the sample proportion, 
a prior probability equal to the proportion of samples was considered 
and yielded a dramatic increase in classification accuracy – hit ratios 
of 83% and 80% were attained for the training samples and cross-
validation data, respectively. This improvement was further magnified 
by the validation test done on samples extracted from areas suitable for 
IRWH. From 168 samples, the discriminant classification identified 159 
as suitable for IRWH – an accuracy of 94%.

Making the prior probability similar to the sample proportion, as 
described in the previous paragraph, provided a striking improvement 
in prediction accuracy. However, the overall improvement achieved was 
not proportional for all the soil associations – only those associations 
including a large proportion of the training sample had a high probability 
of being predicted correctly (Figure 2). For instance, because the deeper 
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soils made up the majority of the training samples, the validation test 
done on areas suitable for IRWH yielded a very high accuracy. The 
accuracy percentage for the minor soil associations (the shallow and 
valley-bottom soils) was very low.
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Figure 2: Map showing the distribution of the three soil associations 
considered: deep soils, lithosols and valley-bottom soils.

To compensate for minor soil associations, one can adjust the prior 
probability assigned to each association and monitor the changes 
effected. This approach could involve making trade-offs between 
the percentage of overall accuracy and class accuracy. To observe 
the effect of such an adjustment, prior probabilities of 20%, 30% and 
50% (Table 2), based on the information observed in the samples (the 
proportion was arbitrarily selected), were used. 

In comparison with the ‘prior probability set proportional to sample’, 
the ‘self-assigned prior probability’ more than doubled the accuracy of 
prediction in the minor associations (Table 2). At the same time, this 
approach reduced the accuracy of the major association. Furthermore, 
it reduced overall accuracy, with resulting accuracies of 74.6%, 66.2% 
and 78.0% for training samples, cross-validation data and test areas 
suited to IRWH, respectively (Table 2). The decrease in overall accuracy 
was considerable, i.e. more than 15%. Thus one should give careful 
consideration to changing the prior probability. The use of sample 
proportion appears to yield the best results and also makes sense from 
a practical point of view. Poor predictions of small areas with poor soils 
are considered relatively unimportant compared with good predictions 
on large areas of good (deep) soils.

The results of the validation test done on Potsane are presented in 
Table 3. As with the exercises considered earlier, the results from this 
test show that prior knowledge on the dominance of soil associations is 
important. Land type data provide valuable information in this respect. 
The estimated percentages of the soils on each TMU are clearly presented 
in the land type inventories now available for the whole of South Africa. 
Because the deep soil association contains the soils that are suitable for 
IRWH, it is their prediction that is important. The validation test shows 
that the model predicts these soils with an accuracy of 85%, which is 
very satisfactory. The poor prediction accuracy of 12.5% for the lithosols 
is relatively unimportant from a practical point of view.

Table 3: Summary of soil association prediction accuracy for Potsane

Instances of prior probability

Percentage correctly classified

Deep soils Lithosols Overall

Equal 42.31 25.00 38.23

Proportional to 
training samples

84.62 12.50 67.65

Improved mapping accuracy with soil associations is an indication that 
accuracy was hampered by pixel size or z-axis accuracy. The scaling of 
90-m grids to 30-m grids is reported to improve resolution, but improved 
z-axis accuracy could make it possible to distinguish finer resolutions. 
During a field visit, we could see subtle nuances in elevation that were 
related to differences in soils; these differences were not detected by 
the DEM. 

Conclusion
The following conclusions are relevant:

•	 There is considerable potential in modelling digital terrain attributes 
in order to predict the distribution of soil associations, for example 
those suitable for IRWH, in a land type. Acceptable accuracy can 
be obtained with careful application of relevant statistical methods.

•	 Improved resolution and accuracy of the z-axis will increase 
mapping accuracy.

•	 The essential role of expert knowledge in formulating the prediction 
model needs to be accentuated.

Table 2: Summary of soil association prediction accuracy (%) for Gladstone

Instances of prediction for different prior probabilities
Soil association and overall accuracy

Valley-bottom Deep Lithosols Overall accuracy

Equal prior probability 33.3 33.3 33.3

Calibration samples 66.7 53.8 73.3 56.9

Cross validation 55.6 49.1 66.7 51.5

Area suited to IRWH – 58.3 – 58.3

Prior probability proportional to sample distribution 6.9 81.5 11.5

Calibration samples 22.2 98.1 2.3 83.1

Cross validation 11.1 97.2 0.00 80.0

Area suited to IRWH – 94.6 – 94.6

Self-assigned prior probability 20.0 50.0 30.0

Calibration samples 55.6 76.4 22.3 74.6

Cross validation 44.4 71.7 40.0 66.2

Area suited to IRWH 78.0 78.0

IRWH, in-field rainwater harvesting
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•	 Based on the different results obtained by changing the pro-
babilities, it is clear that prior knowledge of the soil distribution in 
an area (from land type data or reconnaissance studies) greatly 
improves the accuracy of the discriminant functions.

•	 There is a greater probability of dominant soils being correctly 
classified when the prior probability is set according to sample 
frequency proportion.

•	 For prediction in a new locality, the environmental factors 
influencing soil formation should be similar. This is to a large extent 
taken into consideration when working within a land type.
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