Estimating the age and affinities of *Homo naledi*

AUTHOR:

J. Francis Thackeray¹

AFFILIATION:

¹Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa

CORRESPONDENCE TO:

J. Francis Thackeray

EMAIL:

Francis.thackeray@wits.ac.za

POSTAL ADDRESS:

Evolutionary Studies Institute, Private Bag 3, Wits 2050, South Africa

KEYWORDS:

Rising Star; Plio-Pleistocene; least squares linear regression; morphometric analysis

HOW TO CITE:

Thackeray JF. Estimating the age and affinities of *Homo naledi*. S Afr J Sci. 2015;111(11/12), Art. #a0124, 2 pages. http://dx.doi.org/10.17159/sajs.2015/a0124

Recent discoveries of more than 1500 hominin fossils from the site of Rising Star in the South African Cradle of Humankind, attributed to a new species (*Homo naledi*), have attracted global interest. As yet no secure date for this extraordinary material has been obtained, and the relationship of this species to other Plio-Pleistocene taxa has been greatly debated in the media. Here I report results of morphometric analyses that may facilitate an assessment of the age and affinities of crania attributed to *H. naledi*.

The method is based on a least squares linear regression analysis of mean values of measurements for crania of 12 hominin species (Table 1), as published by Berger et al.¹ The analyses were performed to obtain standard errors of m-coefficients (se_m) in regression equations of the form y = mx + c, based on pairwise comparisons of cranial data, as described elsewhere for pairs of hominin specimens,^{2,3} taking into account criticisms raised by Gordon and Wood⁴.

The degree of scatter around a regression line of pairwise comparisons is quantified by the se_m statistic. Log transformed se_m values for conspecific pairs of modern vertebrates (as well as invertebrates) display a normal distribution with a mean value of -1.61,⁵ which has been considered to be an approximation of a biological species constant (T) with a standard deviation of circa 0.1,³ and which has been used to facilitate a mathematical (probabilistic) definition of a species⁵.

It is of great interest to use this approach by comparing cranial measurements of H. naledi to those of other species listed in Table 1, using data published by Berger et al. 1 Log se $_m$ Hn (x axis) values refer to results of pairwise comparisons when the measurements for H. naledi are on the x axis, and measurements for other taxa are on the y axis in regression analyses. Log se $_m$ Hn (y axis) values refer to results of pairwise comparisons when the measurements for H. naledi are on the y axis, and measurements for other taxa are on the x axis. 'Log se $_m$ mean' refers to the mean of these two values, and 'delta log se $_m$ ' refers to the difference between the two values, which can also be used to assess degrees of similarity or dissimilarity in the context of log se $_m$ values.³

In the context of results reported for conspecific pairs of modern taxa, it is relevant to report two results from the current study. Firstly, *H. naledi* appears to be significantly different (dissimilar) from other species listed in Table 1, because all of the mean log se_m values listed in Table 1 are outside the 95% confidence limits around the mean value of -1.61 +/- 0.1 for conspecifics. Secondly, *H. naledi* appears to be most similar to specimens attributed to early *Homo*, notably *H. habilis*, and (to a lesser extent) *H. rudolfensis* and *H. erectus* (see numbers listed in bold in Table 1).

Table 1: Results of pairwise comparisons between cranial measurements of *Homo naledi* and corresponding measurements of other species

	Log se _m Hn (x axis)	Log se _m Hn (y axis)	Log se _m mean	Delta log se _m
Paranthropus aethiopicus	-0.852	-0.980	-0.916	0.128
P. boisei	-1.098	-1.067	-1.082	-0.031
P. robustus	-1.156	-1.119	-1.137	-0.037
Australopithecus afarensis	-1.110	-1.139	-1.124	0.029
A. africanus	-1.189	-1.142	-1.165	-0.047
A. sediba	-1.192	-1.120	-1.156	-0.072
Homo habilis	-1.326	-1.331	-1.328	0.005
H. rudolfensis	-1.200	-1.272	-1.236	0.072
H. erectus	-1.131	-1.256	-1.193	0.125
H. sapiens (Middle Pleistocene)	-1.062	-1.285	-1.173	0.223
H. sapiens (modern)	-1.102	-1.202	-1.152	0.100

Log se_m Hn (x axis) values refer to results of pairwise comparisons when the measurements for H. naledi are on the x axis, and measurements for other taxa are on the y axis. Log se_m Hn (y axis) values refer to results of pairwise comparisons when the measurements for H. naledi are on the y axis, and measurements for other taxa are on the x axis. Log se_m mean refers to the mean of these two values, and delta log se_m refers to the difference between the two values. Relatively low log se_m values in bold reflect the fact that H. naledi appears to be most similar to specimens attributed to H. habilis, H. rudolfensis and (to a lesser extent) H. erectus, associated with ages in the order of 2 (+/- 0.5) mya.

© 2015. The Author(s). Published under a Creative Commons Attribution Licence. in this comparative study is circa 1.5 mya, and the age for *H. habilis* from sites such as Olduvai Gorge in Tanzania is circa 1.8 mya.

Acknowledgements

This research was supported by the National Research Foundation (South Africa) and the A.W. Mellon Foundation. I am grateful to Sue Dykes for assistance and discussion.

References

- Berger LR, Hawks J, De Ruiter DJ, Churchill SE, Schmid P, Delezene LK, et al. Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa. eLife. 2015;4:e09560. http://dx.doi.org/10.7554/eLife.09560
- Thackeray JF. Homo habilis and Australopithecus africanus, in the context of a chronospecies and climatic change. In: Runge J, editor. Changing climates, ecosystems and environments within arid southern Africa and adjoining regions: Palaeoecology of Africa 33. Forthcoming 2015.
- Thackeray JF, Dykes S. Morphometric analyses of hominoid crania, probabilities of conspecificity and an approximation of a biological species constant. HOMO J Comp Hum Biol. Forthcoming 2015.
- Gordon AD, Wood BA. Evaluating the use of pairwise dissimilarity metrics in paleoanthropology. J Hum Evol. 2013;65:465–477. http://dx.doi. org/10.1016/j.jhevol.2013.08.002
- Thackeray JF. Approximation of a biological species constant? S Afr J Sci. 2007;103:489.

