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Modelling of extreme minimum rainfall using 
generalised extreme value distribution for Zimbabwe

We modelled the mean annual rainfall for data recorded in Zimbabwe from 1901 to 2009. Extreme value 
theory was used to estimate the probabilities of meteorological droughts. Droughts can be viewed as extreme 
events which go beyond and/or below normal rainfall occurrences, such as exceptionally low mean annual 
rainfall. The duality between the distribution of the minima and maxima was exploited and used to fit the 
generalised extreme value distribution (GEVD) to the data and hence find probabilities of extreme low levels 
of mean annual rainfall. The augmented Dickey Fuller test confirmed that rainfall data were stationary, while 
the normal quantile-quantile plot indicated that rainfall data deviated from the normality assumption at both 
ends of the tails of the distribution. The maximum likelihood estimation method and the Bayesian approach 
were used to find the parameters of the GEVD. The Kolmogorov–Smirnov and Anderson–Darling goodness-
of-fit tests showed that the Weibull class of distributions was a good fit to the minima mean annual rainfall 
using the maximum likelihood estimation method. The mean return period estimate of a meteorological 
drought using the threshold value of mean annual rainfall of 473 mm was 8 years. This implies that if in 
the year there is a meteorological drought then another drought of the same intensity or greater is expected 
after 8 years. It is expected that the use of Bayesian inference may better quantify the level of uncertainty 
associated with the GEVD parameter estimates than with the maximum likelihood estimation method. The 
Markov chain Monte Carlo algorithm for the GEVD was applied to construct the model parameter estimates 
using the Bayesian approach. These findings are significant because results based on non-informative priors 
(Bayesian method) and the maximum likelihood method approach are expected to be similar.

Introduction
Relatively extreme low rainfall attributed to global warming, although rare, is a natural phenomenon that affects 
people’s socio-economic activities worldwide. Extreme droughts occur from time to time in Zimbabwe, and impact 
negatively on the country’s economic performance. The drought of rainfall season year 1991/1992 was one of the 
worst in the recorded history of Zimbabwe. Its impact was felt even in the insurance industry which received high 
claims for crop failure.1 Droughts can be viewed as extreme events outside of the normal rainfall occurrences, such 
as exceptionally lower amounts of mean annual rainfall.2 In Zimbabwe, at least 50% of the gross domestic product 
is derived from rain-fed agriculture.3 With more low technology indigenous farmers entering commercial agriculture 
through the accelerated land-reform programme, modelling and prediction of extreme low annual rainfall and the 
associated probabilities of drought become more relevant. 

Developing methods that can give a suitable prediction of meteorological events is always interesting for both 
meteorologists and statisticians. The use of standard statistical techniques in modelling, forecasting and prediction of 
extremes in average rainfall and rare events is less prudent because of gross under-estimation.4 Extreme value theory 
is an alternative and superior approach to quantify the stochastic behaviour of a process at unusually large or small 
levels.4 Extreme value theory provides the statistical framework to make inferences about the probability of very rare 
and extreme events. It is based on the analysis of the maximum (or minimum) value in a selected time period. 

Recently there has been growing interest in modelling extreme events, especially in situations in which scientists 
underestimated the probabilities of extreme events that subsequently occurred and caused catastrophic damage.5 
Work has been done which provides evidence of the importance of modelling rainfall from different regions of the 
world: Nadarajah and Choi6 used extreme value theory for rainfall data from South Korea; Koutsoyiannis7 applied 
extreme value theory to rainfall data from Europe and the USA; Koutsoyiannis and Baloutsos8 applied extreme value 
theory to Greece’s rainfall data; and Crisci et al.9 applied extreme value distributions to rainfall data from Italy. The 
use of extreme value distributions is not restricted to meteorology events; examples appear in energy10; insurance11; 
fish management12 and ecology13. There is no work known to us on rainfall extremes in Zimbabwe. In this paper, we 
provide the first application of extreme value distributions to model minimum annual rainfall in Zimbabwe.

Rainfall in Zimbabwe is associated with the behaviour of the inter-tropical convergence zones whose oscillations are 
influenced by changing pressure patterns to the north and south of the country.10 Zimbabwe lies in the Southwest 
Indian Ocean zone, which is often affected by tropical cyclones. Tropical cyclones are low pressure systems that 
have well-defined clockwise (in the southern hemisphere) wind circulations which spiral toward the centre where 
the winds are strongest and rains are heaviest. Cyclones that develop over the western side of the Indian Ocean 
occasionally affect the rainy season. The amount and intensity of rainfall during a given wet spell is enhanced by 
the passage of upper westerly wind waves of mid-latitude origin.14,15 

Studies of extreme low rainfall are beneficial to decision-makers in government, non-governmental organisations 
involved in early warning systems and food security, poverty alleviation and disaster management and risk 
management. This study will also inform climatologists about the behaviour of extreme low rainfall. Appropriate 
decisions and plans can be made based on the results of this study to prepare the general public for changes 
brought on by extremely low rainfall. The objective of this study was to quantify and describe the behaviour of 
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extremely low rainfall in Zimbabwe. In particular, the aim was to model 
the extreme low rainfall using the generalised extreme value distribution 
(GEVD) by using the maximum likelihood estimation method and the 
Bayesian statistics approach. The mean return period – that is, the 
number of years on average before another drought of equal or greater 
intensity – was also calculated.

Research methodology

Normal distribution
A normal distribution is symmetrical and has a bell-shaped density curve 
with a single peak. The normal density function, which gives the height 
of the density at any value x is given by:

gµ,σ = exp
1

2πσ2
1

2σ2
(xp - µ)2 with σ > 0  Equation 1

where µ is the mean (where the peak of the density occurs) and σ is the 
standard deviation (which indicates the spread or girth of the bell curve).

Generalised extreme value distribution
In climatology, meteorology and hydrology, maxima of temperatures, 
precipitation and river discharges have been recorded for many 
decades.16 The extreme value theorem provides a theoretical framework 
to model the distribution of extreme events and the three-parameter 
GEVD was recommended for meteorology frequency analysis.17 The 
three parameters are: location, scale and shape. The GEVD is a family of 
continuous probability distributions developed within the extreme value 
theorem. The GEVD unites the Gumbel, Fréchet and Weibull family of 
distributions into a single family to allow a continuous range of possible 
shapes. Based on the extreme value theorem, the GEVD is the limiting 
distribution of properly normalised maxima of a sequence of independent 
and identically distributed random variables.18 Thus, the GEVD is used to 
model the maxima of a long (finite) sequence of random variables. The 
unified GEVD for modelling maxima is given by:

G
, µ, σ (x) = exp   1 +   

1
 with  ≠ 0

x - µ

σ  Equation 2

with µ∈R, σ>0 and 1 +  (x - µ
σ ) >0,

where µ, σ and  are the location, scale and shape parameters, 
respectively. The probability density function is sometimes called 
the Fisher–Tippett distribution and is obtained as the derivative of the 
distribution function:

g 
, µ, σ (x) =     1 +  1 + exp

1
σ

x - µ

σ

x - µ

σ

1


1


-1

,  ≠ 0

 Equation 3

The shape parameter  is also known as the extreme value index. The 
parameter -1 is the rate of tail decay of the GEVD. If  > 0, G belongs to the 
heavy-tailed Fréchet class of distributions such as Pareto, Cauchy, student-t 
and mixture distributions. If  < 0, G belongs to the short-tailed with finite 
lower bounds Weibull class of distributions which includes distributions 
such as uniform and beta distributions. If  = 0 then G belongs to the light-
tailed Gumbell class of distributions which includes distributions such as 
normal, exponential, gamma and log-normal distributions.19 

Modelling minima random variables
The classical GEVD for extremes is based on asymptotic approximations 
to the sampling behaviour of block maxima. The block maxima 
size (hourly, daily, weekly, monthly or yearly) varies according to 
instrument constraints, seasonality and the application at hand. The 
only possible limiting form of a normalised maximum of a random 

sample (when a non-degenerate limit exists) is captured by the GEVD. 
The data set is partitioned into blocks of equal length and distribution 
and GEVD is fitted to the set of block maxima. In this study, minima 
rainfall was modelled using GEVD. In order to model minima random 
variables we use the duality between the distributions for maxima and 
minima. If MN= min{X1,X2,...,XN} where X1,X2,...,XN is a sequence of 
independent random variables having a common distribution function 
and Yi = -Xi for i = 1,..,N the change of sign means that small values 
of Xi correspond to large values of Yi. So if MN = min{X1,X2,...,XN} and 
MN

~
 = max{Y1,Y2 ,...,YN}, then MN = -MN

~
. The minima becomes:

MN

~
 = -max{-X1,-X2,...,-XT} Equation 4

where Xi for i = 1,2,3,...,T represents mean annual rainfall in period i. 
Extreme maxima theory and methods are then used to model extreme 
minima.5,20 Based on the extreme value theorem that derives the GEVD, 
we can fit a sample of extremes to the GEVD to obtain the parameters 
that best explain the probability distribution of the extremes. 

Parameter estimation
There is a wide variety of methods to estimate the GEV parameters in the 
independent and identically distributed settings.21 The three parameters 
are estimated by method of moments, maximum likelihood method, 
method of textiles22 and probability weighted moments or equivalent 
L-moments.17 Hosking23 showed that the probability weighted moments 
quantile estimators for the GEVD are better than the maximum likelihood 
method for small samples (n < 50). Madsen et al.24 also showed that 
method of moments quantile estimators perform well when the sample 
size is modest. In this study, the maximum likelihood method was 
exploited because n > 50.

Maximum likelihood method
Under the assumption that X1,....,Xm are independent random samples 
having a GEVD, the log-likelihood for the GEVD parameters when  ≠ 0 is:

l(µ,σ,) = -mlogσ - (1+   ) ∑ log [1 +                ] - ∑ [1+              ]1


m m

i = 1 i = 1

xi - µ
σ

xi - µ
σ

1


 Equation 5

provided that 1 +  
xi - µ

σ > 0 for i = 1,...,m.5 We differentiated the 
log-likelihood of GEVD to find a set of equations which we solved 
using numerical optimisation algorithms (see Appendix 1 in the online 
supplementary material). For computational details, we refer to previous 
studies.23,25-27 Because the support of G depends on the unknown 
parameter values, the usual regularity conditions underlying the 
asymptotic properties of maximum likelihood estimators are not satisfied. 
This problem is studied in depth by Stephens28. In the case  > -0.5, 
the usual properties of consistency, asymptotic efficiency and asymptotic 
normality hold.

Test for stationarity
The augmented Dickey Fuller (ADF) stationarity test is performed on the 
data to test for stationarity. The null hypothesis of the ADF test is that 
there is no trend while the alternative hypothesis is that there is a trend 
in the data.

Goodness of fit
To access the quality of convergence of the GEVD, the Kolmogorov–
Smirnov (K-S) and Anderson–Darling goodness-of-fit tests were used. 
The K-S test, based on the empirical cumulative distribution function, 
is used to decide if a sample comes from the hypothesised continuous 
distribution. The K-S test is less sensitive at the tails than at the centre 
of the distribution. The Anderson–Darling test, which is an improvement 
of the K-S test, compares the fit of an observed cumulative distribution 
function to an expected cumulative distribution function; this test gives 
more weight to the tails of a distribution than does the K-S test.29
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Return period or level estimates
We can estimate how often the extreme quantiles occur with a certain 
return level. The return level is defined as a level that is expected to be 
equalled or exceeded on average once every interval of time (T) with a 
probability of p. For the normal distribution we set:

Gµ,σ = ∫xp exp
1

2πσ2-∞

1
2σ2 (xp - µ)2 dx = 1 - p Equation 6

where T is the return period and xp the return level. By setting the 
return period and solving the equation (see Appendix 1 in the online 
supplementary material), the return level, xp , can be calculated:

xp = σ -1 (1-p) + µ Equation 7

which can be re-written as:

xp = σZ 1-p + µ Equation 8 

Similarly, for the GEVD we set:

G 
, µ, σ (x)= exp = 1 - p1 + 

xp - µ
σ

1


 Equation 9

The return level (see Appendix 1 in the online supplementary material) 
is given by:

xp = µ + In 1 - - 1
σ


1
T

-

 ,  ≠ 0 Equation 10

Return levels are important for prediction purposes and can be estimated 
from stationary models. The mean return period is the number of years 
we expect to wait on average before we observe another drought of 
equal or greater intensity. If the exceedance probability of observing a 
drought of a given severity in any given year is p then the mean return 
period T is such that T = 1

p .

Bayesian analysis of extreme values for GEVD
Inference on the extremes of environmental processes is important 
to meteorologists, civil engineers, agriculturalists and statisticians. 
Naturally, data at extreme levels are scarce. Bayesian inference allows 
any additional information about the processes to be incorporated as prior 
information. The basic theory of Bayesian analysis of extreme values is 
well documented (see Coles5, Coles and Tawn30 and Gamerman31 for more 
information). The Markov chain Monte Carlo techniques are applied in this 
paper to give Bayesian analyses of the annual minima rainfall data for 
Zimbabwe. [The annual maximum rainfall data are given in Appendix 2 of 
the online supplementary material.] Markov chain Monte Carlo techniques 
provide a way of simulating from complex distributions by simulating from 
Markov chains, which have the target distributions as their stationary 
distributions.32 In this paper, the prior is constructed by assuming there 
is no information available about the process (rainfall) apart from the 
data. The annual rainfall data have a GEVD, i.e. Xi~GEVD(µ, σ, ) and the 
parameters µ, σ and  are treated as random variables for which we specify 
prior distributions. For specification of the prior, the parameterisation  = 
log σ is easier to work with because σ is constrained to be positive. The 
specification of priors enables us to supplement the information provided 
by the data. The prior density is:

π(µ,,) = πµ(µ)π

()π


(), Equation 11

where each marginal prior is normally distributed with large variances. 
The variances are chosen to be large enough to make the distributions 
almost flat, corresponding to prior ignorance. The joint posterior density 
is the product of the prior and the likelihood and is given as:

π(µ,σ,|x) ∝ π(µ,,)L(µ,,|x) Equation 12

where 

L(µ,σ,|x) =     exp ∏i=1 1 + - 1 +  1
σm

xi - µ
σ

xi - µ
σ

1


1


m

is the likelihood with σ replaced by e. The Gibbs sampler is used to 
simulate from each of the full conditionals. The posterior is of the form:

π(µ,σ,|x)L(µ,,|x) ∝ πµ(µ)π

()π


()L(µ,,|x)

so the full conditionals are of the form:

π(µ|,) = πµ(µ)L(µ,,|x)

π(|µ,) = π

()L(µ,,|x)

π(|µ,) = π

()L(µ,,|x)

For details of the Markov chain Monte Carlo algorithm refer to R package 
(evdbayes version1.1-1).

Results

Description of data
The analysis was based on the historical mean annual rainfall data recorded 
from all 62 weather stations in Zimbabwe, dating from as far back as year 
1901 to year 2009. A mean annual rainfall figure for the country was 
calculated. The mean data were obtained from the Zimbabwe Department 
of Meteorological Services. From Figure 1, it seems reasonable to assume 
that the pattern variation has stayed stationary over the observation period, 
and we can model the rainfall data as independent observations from the 
GEVD. In fitting a 109-year data set to a GEVD, a block size had to be 
chosen so that individual block minima had a common distribution; yearly 
blocks were therefore used in this study. Figure 1 shows the graph of 
xi  , i = 1,..., n the annual rainfall for Zimbabwe.

1200.0
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200.0
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Figure 1: Time series plot of the xi mean annual rainfall for Zimbabwe 
from 1901 to 2009.

The duality principle between the distribution of minima and maxima to fit 
the distribution of minimal rainfall for Zimbabwe was employed. Maximum 
likelihood estimates of parameters were estimated (see Appendix 1 in the 
online supplementary material). Figure 2 shows the graph of -xi annual 
rainfall for Zimbabwe.
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Figure 2: Time series plot of the -xi annual rainfall for Zimbabwe from 
1901 to 2009.

Unit root test for stationarity
The augmented Dickey Fuller (ADF) test was used to check for 
stationarity of -xi annual rainfall for Zimbabwe. Table 1 shows the results 
of the ADF test.

The p-values of the ADF test statistics are significant; we therefore 
reject the null hypothesis of no stationary at 1%, 5% and 10% levels of 
significance and conclude that the rainfall data are stationary. The ADF 
test also indicates that the data do not follow any trend. Therefore, we 
can determine the return levels of minima annual rainfall.

Table 1: Unit root test to determine stationarity of minimum annual 
rainfall data for Zimbabwe for the period 1901–2009

Test
Test’s critical values

Test statistic
1% 5% 10%

Augmented Dickey Fuller -4.05 -3.45 -3.15
-4.26 

(0.0000)

Descriptive statistics
Table 2 shows the descriptive statistics – specifically the coefficient of 
skewness and Jarque-Bera normality test – of the 109 years of annual 
rainfall data. The coefficient of skewness of minima annual rainfall (-xi) is 
negative. This observation suggests that the rainfall data fit a distribution 
which is relatively long left tailed.

Table 2: Summary statistics of normality tests of annual rainfall data from 
1901 to 2009  

N Minimum Maximum Mean
Standard 
deviation

Coefficient 
of 

skewness

Jarque–
Bera 

statistic 

109 -1192.60 -335.30 -659.93 169.25 -0.45
3.85 

(0.15)

Fitting distributions to minimum mean annual rainfall

Normal distribution
Figure 3 shows the normal probability density function of minima mean 
annual rainfall data from 1901 to 2009. 
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Figure 3: The normal probability density function of minimum annual rainfall for Zimbabwe for the period 1901–2009.
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The parameter estimates and their corresponding standard errors in 
brackets are:

µ = -659.9312 (16.13623)ˆ

σ = 168.4675 (11.41010)ˆ

Figure 3 shows the minima mean annual rainfall data normal quantile–
quantile (Q-Q) plot of minima annual rainfall for Zimbabwe. The normal 
Q-Q plot of minima annual rainfall shows deviation from a normal 
distribution at both lower and upper tails of the data. However, based on 
the p value of the Jarque–Bera test, we fail to reject the null hypothesis 
of normality. The question is: If annual rainfall is normally distributed, 
then how do we account for extremely low rainfall (severe droughts) or 
extremely high rainfall (severe floods) events that have been recorded? 
The normal distribution approximates these events as negligible or close 
to zero. If the distribution of minima annual rainfall is heavy-tailed or 
skewed, the normal distribution may be misleading. Thus, the normal 
distribution is not a good fit for these rainfall data. The further one gets 
into the tails of the distribution, the rarer the event, but the event will be 
catastrophic if it happens. It is important to fit a distribution that is able to 
capture the probability of extreme minimum annual rainfall.

Generalised extreme value distribution
Figure 4 shows the diagnostic plots for the goodness of fit of the minima 
annual rainfall for Zimbabwe from 1901 to 2009.

Table 3 shows the maximum likelihood estimates of the GEVD model 
with their corresponding standard errors in brackets.

These results show that the data can be modelled using a Weibull class of 
distribution because ̂<0 (bounded tail). Combining estimates and standard 

errors, the 95% confidence intervals for , σ and µ are [-0.5561; -0.3259], 
[154.8222; 203.7196] and [-744.4090; -670.9278], respectively.  is 
significantly different from zero because zero is not contained in the interval. 

Table 3: Maximum likelihood estimates (standard errors) of the generalised 
extreme value distribution parameters 

Shape ̂ Scale ̂ Location µ̂

-0.44 
(0.06)

179.27 
(13.66)

-707.67 
(18.75)

Model diagnostic
It is important to confirm that the data adequately fit the GEVD. Figure 3 
shows the Q-Q plot and the P-P plot of the data. The quantiles of minima 
rainfall regressed against the quantiles of GEVD shows a straight line. This 
finding suggests that the data do not deviate from the assumption that they 
follow a GEVD. Table 4 shows the K-S and Anderson–Darling statistics.

The Anderson–Darling statistic is less than its 5% critical value and 
the K-S statistic test leads to a decision of non-rejection of the null 
hypothesis. We conclude that the minimum annual rainfall for Zimbabwe 
follows the specified GEVD.

The maximum likelihood estimate for  is negative, corresponding to 
a bounded distribution, in which the 95% confidence interval does not 
contain zero. Greater accuracy of the confidence interval is achieved 
by the use of the profile likelihood. Figure 5 shows the profile likelihood 
of the generalised extreme value parameter , from which a 95% 
confidence interval for  is obtained as approximately [-0.55; -0.45], 
which is almost the same as the calculated 95% confidence interval.
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Figure 4: The generalised extreme value probability density function of minima annual rainfall for Zimbabwe for the period 1901–2009.
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Figure 5: Profile likelihood for the generalised extreme value parameter   
shape, for minimum annual rainfall for Zimbabwe for the period 
1901–2009.

Table 4: Kolmogorov–Smirnov and Anderson–Darling tests to determine 
whether annual rainfall data for Zimbabwe for 1901–2009 follow 
a generalised extreme value distribution

Kolmogorov–Smirnov test Anderson–Darling test

Statistic Critical value Statistic Critical value

0.058 (0.84) 0.13 0.24 2.50

Return level estimate
The return levels or periods are estimated using the GEVD. Rainfall less than 
473 mm per annum is categorised by the Department of Meteorological 
Services in Zimbabwe as a meteorological drought. Table 5 shows the 
return level estimates at selected return intervals T using the GEVD. Mean 
annual rainfall is expected to be below the drought threshold value of 
473 mm in a return period of T=8 years.

Table 5: Return level estimates (mm) at selected return intervals (T) 
determined using the generalised extreme value distribution 

T = 5 T = 10 T = 15 T = 20 T = 25 T = 30 T = 35

510.95 451.84 426.18 410.86 400.35 392.55 386.45

The minimum mean annual rainfall for Zimbabwe was 335.3 mm, recorded 
in the 1991/1992 rainfall season. This is the worst drought in the recorded 
history of the country. The return level estimate of 335.2 mm is associated 
with a mean return period of about 90 years, that is, we expect a drought 
of similar or worse magnitude in 90 years.

Bayesian analysis of minima annual rainfall data
The Markov chain Monte Carlo method was applied to the annual 
minimum rainfall data. The GEVD scale parameter was re-parameterised 
as  = log σ to retain the positivity of this parameter. The prior density 
was chosen to be

π(µ,,) = πµ(µ)π

()π


(), Equation 13

where the marginal priors, πµ(.), π
(.) and, π


(.) are

µ ~ N(0,400000)

 ~ N(0,400000)

 ~ N(0,10000)

for the three parameters of the GEVD, where, for example, N(0,400000) 
denotes a Gaussian distribution with mean 0 and variance 400 000. 
These are independent normal priors with large variances. The variances 
were chosen to be large enough to make the distributions almost flat, 
corresponding to prior ignorance. In this paper, 30 000 iterations of the 

algorithm were carried out. Figure 6 shows the Markov chain Monte 
Carlo trace plots.

To check that the chains had converged to the correct place, different 
starting points were used. All the chains converged. The estimated posterior 
densities for the GEVD parameters for Zimbabwe are given in Figure 7.

The posterior means and standard deviations for the GEVD parameters 
are given in Table 6. Using non-informative priors, which are almost 
flat and add very little information to the likelihood, the posterior means 
are close to the maximum likelihood estimates of the GEVD parameters 
given in Table 3. The frequentist properties are preserved by using non-
informative priors in the Bayesian statistics approach.

Conclusion
We modelled extreme minimum annual rainfall in Zimbabwe using the 
GEVD. Exploring the duality of maxima and minima, annual rainfall 
data from 1901 to 2009 were fitted to the GEVD. The maximum 
likelihood estimation method was used to obtain the estimates of the 
parameters. Model diagnostics, which included the Q-Q plot and the K-S 
and Anderson–Darling tests, showed that the minimum annual rainfall 
follows a Weibull class of distribution. The ADF test showed that the 
minima annual rainfall data were stationary and had no trend. Return 
level estimates, which are the return levels expected to be exceeded in a 
certain period, were calculated for Zimbabwe. 

The 1992 record drought is likely to return in a mean return period of 
T = 90 years. The Department of Meteorological Services in Zimbabwe 
categorises a year with mean annual rainfall below 473 mm as a 
meteorological drought year. The mean annual rainfall is expected to be 
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Figure 6: Trace plots of the generalised extreme value distribution 
parameters using non-informative priors for minimum annual 
rainfall for Zimbabwe for the period 1901–2009.
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and introduced it to R.C. together with the preliminary analysis and draft 
on outcomes, provided guidance, and proofread and corrected the paper. 
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Figure 7: Posterior densities of the generalised extreme value distribution 
parameters using non-informative priors for minimum annual 
rainfall for Zimbabwe for the period 1901–2009.

Table 6: Posterior means (standard deviations) of the generalised extreme 
value distribution parameters

Shape ̂ Scale ̂ Location µ̂

-0.43 
(0.15)

182.26 
(38.00)

-705.65 
(55.63)

Mean annual rainfall is expected to be below the drought threshold value of 473 mm 
in a return period of 8 years.

less than the drought threshold value of 473 mm in a mean return period 
of T = 8 years. 

The GEVD parameter estimates using the Bayesian approach were close 
to the maximum likelihood estimates with smaller standard deviations. 
Using non-informative priors, the frequentist properties of the model 
are preserved. Using classical statistics is therefore akin to using 
Bayesian statistics with non-informative priors. Expert opinion, when 
available in future, can be used to further improve the model. An area 
of further research is modelling and predicting minimum annual rainfall 
in Zimbabwe using the Bayesian approach using informative priors. The 
use of expert priors may improve the precision of the parameters over 
the maximum likelihood estimates. 
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