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Predictive modelling of wetland occurrence in 
KwaZulu-Natal, South Africa

The global trend of transformation and loss of wetlands through conversion to other land uses has deleterious 
effects on surrounding ecosystems, and there is a resultant increasing need for the conservation and 
preservation of wetlands. Improved mapping of wetland locations is critical to achieving objective regional 
conservation goals, which depends on accurate spatial knowledge. Current approaches to mapping wetlands 
through the classification of satellite imagery typically under-represents actual wetland area; the importance of 
ancillary data in improving accuracy in mapping wetlands is therefore recognised. In this study, we compared 
two approaches – Bayesian networks and logistic regression – to predict the likelihood of wetland occurrence 
in KwaZulu-Natal, South Africa. Both approaches were developed using the same data set of environmental 
surrogate predictors. We compared and verified model outputs using an independent test data set, with 
analyses including receiver operating characteristic curves and area under the curve (AUC). Both models 
performed similarly (AUC>0.84), indicating the suitability of a likelihood approach for ancillary data for wetland 
mapping. Results indicated that high wetland probability areas in the final model outputs correlated well with 
known wetland systems and wetland-rich areas in KwaZulu-Natal. We conclude that predictive models have 
the potential to improve the accuracy of wetland mapping in South Africa by serving as valuable ancillary data.

Introduction
There has been extensive loss of wetland areas globally through the combined effects of habitat loss and 
fragmentation, ecosystem disruption and global warming.1-3 This loss is problematic because wetlands are highly 
productive environments that support unique fauna and flora4; in addition, these environments can be called the 
‘kidneys of the landscape’ because of the environmental services they provide. Their hydrological and chemical 
cycles cleanse polluted waters, prevent floods, protect shorelines and recharge groundwater aquifers.1,5 Wetland 
services include provisioning services, regulating services, cultural services and supporting services.1,6,7 The loss 
of wetland ecosystems has adverse effects on the surrounding ecosystems, and, as a result, wetlands have gained 
considerable recognition over the past 20 years as society realises the importance of managing them.8 

To prevent further loss and to conserve existing wetland ecosystems for their biodiversity value and ecosystem 
goods and services, it is important to develop an inventory of wetlands.7,9 An inventory of wetlands forms a 
baseline data layer which can be used for many purposes, including comprehensive resource management plans, 
environmental impact assessments, natural resource inventories, habitat surveys, and the trend analysis of wetland 
status.9-11 Critical to building a wetland inventory is mapping wetlands and gathering necessary information such as 
the wetland type, location and size. However, mapping of wetlands is notoriously difficult because the distribution 
of wetlands across a landscape are unique actualisations of many abiotic and biotic factors, including geological 
and geomorphic history, topography, connections to the local and regional hydrological system, connections to 
local and regional ecosystems, time since formation, and disturbance history.12 Nevertheless, in spite of the high 
heterogeneity of wetlands that complicates their return signal, it is possible to generalise that three key factors 
– climate, topography and geology – are necessary in the formation of the hydrological conditions found in 
wetlands.12 Based on this generalisation, it is consequently possible to map wetlands at a regional level.

At the broad scale, early wetland mapping exercises relied on interpretation of aerial photographs, which was time 
consuming and limited by the extent and resolution of the imagery available. In recent decades, the classification 
of satellite remote sensing has been the common approach in mapping wetlands globally.13 Remote sensing has 
proved to be cost effective and a less time-consuming method of mapping wetlands over large geographical 
areas.9,14,15 While there is an abundance of literature reviewing approaches to mapping wetlands using satellite 
imagery,5,10,14,16-20 limitations associated with satellite image classification of wetlands exist. These limitations 
include spectral confusion and the misclassification of satellite imagery, which can be caused by fluctuating 
water levels which alter the spectral reflectance of the vegetation, or fire scars and hill shading which are often 
misclassified as open water on satellite imagery.9,10 

The literature therefore also highlights the importance of ancillary data to increase the accuracy of wetlands 
mapped.14 Ancillary data can be in the form of topological variables (e.g. slope, elevation, flow accumulation), 
environmental characteristics (e.g. soil characteristics, geology, rainfall, evaporation) and predictive models 
(e.g. a terrain-based hydrological model). These data have been used to improve the accuracy of many satellite 
image classification techniques, including wetland mapping approaches.14,21 Ancillary data may take the form of 
probability surfaces, in which estimates of those parameters corresponding with identified wetland areas are used 
to guide the ground truthing exercise of wetland spatial images, to investigate regions where wetlands are under-
represented (i.e. likely to be more prevalent than their current mapped status reflects), and to assess whether 
seemingly separate wetland polygons are in fact fragments of single larger wetland systems.

Predictive models have advantages that include that their outputs are readily interpretable (values range between 
0 and 1, or as a percentage), that their outputs can be treated as ratios (a probability of 0.6 or 60% is twice as 
high as a probability of 0.3 or 30%), and that their accuracy can be tested with sample data.22 Such models may 
make use of continuous frequency data (for example, logistic regression models) or continuous data which are 
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discretised into states associated with conditional probabilities, as is the 
case with Bayesian network models. While both approaches essentially 
produce the same end product, each method offers advantages and 
disadvantages. In this study, we compared the probability of wetland 
occurrence surfaces derived from a Bayesian network (BN) with those 
derived from a logistic regression (LR) model. We also assessed the 
use of probabilistic models as a method for deriving ancillary data 
to supplement an existing regional wetland coverage and improve its 
reliability and accuracy. 

Methods
Study area

The study area covered the entire province of KwaZulu-Natal (KZN), 
which is located in the eastern central part of South Africa (Figure 1). 
The western boundary of the province is marked by the Drakensberg 
escarpment, which reaches over 3000 m amsl in places. The escarpment 
in the west and the warm Mozambique current in the east account for 
much of the large annual variation in temperature and rainfall experienced 
in the province.22,23 Partly as a result of the varied geology, topography 
and climate (high mean annual precipitation and relatively low potential 
evapotranspiration) of the province24, wetlands are well represented in 
this province, covering an area of at least 4200 km2 (approximately 5% 
of KZN)25. The hydrological regimes of wetlands in KZN are generally 
not only supplied by precipitation, but are also driven by a mixture 
of precipitation, groundwater (including infiltration, percolation and 
interflow) and streamflow. For example, the wetlands on the coastal 
plains owe their existence to the high rainfall averages and subtropical 
conditions as well as a series of marine regressions and transgressions 
that took place from 120 000 to 20 000 years BP.26 Conversely, high 
rainfall, gradual sediment trapping slopes and Karoo dolerite key points 
make areas climatically and geologically conducive to wetland formation 
inland. In KZN’s escarpment areas, there is a high run-off of water which 
is collected in the topography of the landscape, and in cases in which 
the mean annual precipitation exceeds the potential evapotranspiration, 
the saturated soils remain wet – forming wetland rich areas. A second 
reason KZN was selected as a study area was that the province’s array 
of diverse natural resources makes KZN suitable for varied agricultural 

production (mainly sugarcane, forestry and maize), mining activities 
and a variety of different domestic and industrial uses.27 These activities 
are increasingly exerting pressure on the province’s natural resources, 
including wetlands. 

Model data

The initial step was to construct a data set of wetland presence/absence 
and associated environmental (landscape and climatic) variables1,12 
(Table 1). The existing wetland layer for KZN compiled by Scott-Shaw 
and Escott33 represents the best available and most comprehensive 
wetland data set for the province, and was used as the basis for 
establishing wetland presence/absence. The provincial wetland layer 
is a compilation product that has been ongoing over the past decade, 
drawing from multiple sources, including the 1:250 000 geological map, 
the priority wetlands coverage identified by Begg34, manual mapping 
using a wide variety of aerial and satellite imagery, and information 
collated from private sector sources. The wetland layer was split 
randomly using Hawth’s tools35 into training and test data sets to avoid 
over-fitting of the model36. This wetland layer was used as the template 
for extracting environmental parameter statistics correlating with known 
wetland areas (training wetland data set), and to assess and validate the 
final probability layer output (test wetland data set). A key assumption 
was that the KZN wetland layer was accurate in terms of wetland extent 
area and location. To provide some level of confidence in the KZN 
wetland layer, an accuracy assessment of the layer was first completed 
before modelling began. Using 239 wetland sites from referenced aerial 
photographs,37 the 2011 KZN wetland layer was visually assessed to 
determine if the coverage had captured their location and the extent of 
the wetland sites. The wetland layer correctly identified 82% (196 out 
of 239) of the photo reference wetland sites, providing a degree of 
confidence in the input wetland layer used in building and assessing 
the model. The 239 sites were identified from georeferenced large-
scale aerial photographs, clearly identifying different wetland systems 
spread broadly across the entire province. These sites formed a part of a 
broader land-cover mapping field verification exercise, and therefore had 
no bias to the existing KZN wetland layer and were suitable for assessing 
and validating the wetland layer. 
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Figure 1:	 The study area of KwaZulu-Natal, South Africa. Note that provincial boundaries reflect those of 2008, as these corresponded with the wetland 
coverage used.
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derive an optimal predictor data set by eliminating redundant variables 
for the original list of 19 possible variables. Principal component analysis 
(PCA)40 was used to select an optimal set of input variables representing 
greater predictive power with regard to where wetlands are likely to 
occur. This approach of eliminating variables using PCA could only be 
processed using ordinal data, therefore excluding the nominal variables 
in this step, namely hydromorphic soils, geology and soil association. 
The process of elimination of redundancy involved the stepwise analysis 
of the biplots and variable loadings of each input variable. Correlation of 
two variables resulted in the elimination of the variable with the smallest 
variable loading. Preference was given to variables with higher spatial 
resolution. The co-linearity of the data set was tested following each 
rerun of the PCA, until the co-linearity of the data set was below the 
critical threshold value of ten.43

Calculating probabilities for the BN required the data to be reduced to a 
finite set of mutually exclusive states (e.g. high, medium and low; yes 
or no).44 Following this assumption, the refined pool of input variables 
was translated from continuous values to qualitative states of high, 
medium and low. Two approaches were used in discretising the data. 
Firstly, continuous data were reclassified into states using the Jenks 
natural break algorithm,45 in which class breaks are identified that best 
group similar values and that maximise the differences between classes. 
Secondly, data in qualitative states were reclassified into states that 
best represented the respective variable characteristics; for example, 
the qualitative variable ‘terrain units’ discretised the states ‘foot slope’ 
and ‘valley bottom’ as low, ‘mid-slope convex’ and ‘mid-slope concave’ 
as medium and ‘crest’ as high. This reclassification was done for both 
the database and the corresponding spatial layers. Nominal variables 
that could not be quantified into qualitative states as required for the 
BN were eliminated from the model. Following the PCA elimination 
process and defining variable states, ‘Hydromorphic Soils’ was the only 
nominal variable added post PCA, for both models,  because it could be 
discretised into ‘yes’ or ‘no’ states, signifying areas presumably well 
saturated under normal conditions, and thereby providing an additional 
predictor of wetland areas. Nominal variables made up of a number 
of nominal classes, such as soil association and geology, could not 
be discretised into states (high, medium or low). The discretising of 
variables into states with many nominal classes is a limitation of this 
method, and is a challenge of BNs in general.46 

We used NETICA41, which is the most popular BN software used in 
environmental modelling36, to construct our BN model. The BN was 
structured using network nodes, each with a finite set of mutually 
exclusive states. Cain44 explains that the links between these nodes 
represent their causal relationship, and each node has a set of 
probabilities specifying the likelihood that a node will be in a particular 
state given the states of those nodes that affect it directly. 

Following the transformation of the input variables into states, the 
records in the database became cases in the case learning file for 
the BN, which produced conditional probabilities in a final conditional 
probability table (CPT), which in turn formed the basis in creating a 
wetland probability layer. BNs are informed through a set of cases (case 
learning file); in this instance, the training database represented the 
set of cases, and the number of cases represented the sample size.36 
Because BNs are not spatially explicit47, a wetland probability layer had 
to be generated using the probabilities in the BN’s CPT. The probability 
layer was derived by logarithmically coding the cases in both the CPT 
and the spatial input raster layers, so that values from the Bayesian CPT 
matched the equivalent logarithmic coded variable raster layers. The 
aggregation of the coded spatial layers created a single raster layer with 
unique logarithmic values as raster values. The aggregation of cases 
in the CPT created matching unique logarithmic values corresponding 
to probabilities. The unique logarithmic values with probabilities in the 
CPT formed the reclassification file, which was used to reclassify all the 
raster values in the raster layer to probabilities found in the CPT. This step 
created the probability layer, spatially indicating the probability of wetland 
occurrence in KZN. Probability values were then extracted using the test 
wetland and non-wetland point data set, which provided the necessary 
data for the receiver operating characteristic (ROC) analysis. 

Table 1:	 Maximal list of input variables used to develop predictive 
wetland models

Variable type Variable Units

Climatic

Solar radiation28 MJ/m2 per day

Mean annual temperature28 °C

Summer heat units28 ° days

Winter heat units28 ° days

Hydrologic

Mean annual precipitation28 mm

Mean annual potential evaporation28 mm

Mean annual evapotranspiration28 mm

Groundwater depth29 m

Geologic, soil and 
topographic

†Landform30

†Clay content31 –

†Soil depth31 –

†Hydromorphic soil31 –

†Soil moisture31 –

†Terrain units31 –

Digital elevation 
model derived

Altitude32 m amsl

Slope32 Degrees

Aspect32 Degrees

Flow accumulation32 –

Flow direction32 Degrees

†Ordinal variables (others are continuous)
–, no units

As the environmental variables associated with the wetlands layer 
differed in data format, spatial resolution, projection and extent because 
they were sourced from different organisations and institutions, 
standardisation of all input variables was required. Input variables 
that were model-derived had their own limitations and errors, and 
standardisation of these layers may have compounded these limitations; 
however, this possibility was unavoidable in this study. The initial step 
was to standardise the input variable layers in terms of projection, extent 
and format. The standardisation included the transformation of all layers 
to a common projection system (Transverse Mercator, WGS 84 datum), 
and resampling to a resolution of 20 m and an extent according to the 
digital elevation model (DEM)32 used in the model. Most layers were 
resampled from a coarser (± 30 m to 1600 m) to a finer (20  m) 
resolution using the nearest-neighbour resampling technique. This 
technique was chosen because it does not alter the cell values in the 
categorical variables during the resampling process. 

Model development
The modelling process of the study was broken into a number of steps 
to derive the final raster layer representing the probability of wetland 
occurrence in KZN. The process made use of the geographical information 
system software package ArcGIS 9.338, statistical package R39, the 
multivariate statistical package MVSP40, NETICA41, and Medcalc42, with 
additional data manipulations performed in a spreadsheet. The basis 
for the modelling was a spreadsheet we generated of wetland presence 
and absence versus associated environmental variable values. This 
spreadsheet consisted of approximately 45  000 statistical extraction 
points (Hawth’s tools was used to generate extraction points for non-
wetland areas) to build the database, of which 25 000 were records for 
wetland presence and 20 000 for wetland absence. 

Next, we investigated whether there were high levels of inter-correlation 
between the input predictor variables. From this analysis, we wanted to 
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For a comparative approach, we used the same refined training wetland 
data set to fit a logit binomial model in the form of Equation 1 using a 
stepwise regression process.48 The constant and variable coefficients 
calculated here were used to determine the probability of wetland 
occurrence at each wetland and non-wetland point in the binary test 
wetland data set. Model fitting was undertaken with the statistical package 
R39 using the binary condition values (0, 1) as the response variable 
(generalised linear model, binomial distribution, logit link function39) 
to estimate the probability of wetland occurrence. The LR model was 
made spatially explicit by multiplying the variable raster layers by their 
determined coefficients, and then adding all raster layers together into a 
single layer with the model constant added to the final layer.

p = ,	 Equation 1

where α is a constant and β is a coefficient for variable x, and where x 
could be, for example, the Landform type. 

Model validation and assessment

The test wetland data set was used to compare the modelled probabilities 
derived from the LR model and the probabilities derived through a BN. 
ROC curves and the area under the curve (AUC) were used to compare 
the two models, and were calculated using suitable software.42 ROC 
analysis is a useful technique in visualising the performance of a binary 
classifier system as its discrimination threshold is varied. This variability 
provides a richer measure of classification performance than scalar 
measures such as accuracy, error rate and error cost.49 In this instance, 
probabilities from the BN and LR model were assessed in approximately 
8600 test wetland sites (derived from the test wetland data set), and in 
8600 non-wetland sites (derived randomly using Hawth’s tools). The 
17 200 wetland and non-wetland sites formed the binary data necessary 
for the ROC analysis. The predicted probabilities from both models were 
plotted against each other to assess their degree of correlation. Key 
to this analysis was determining the sensitivity and specificity of the 
final probability layers at a criterion threshold as well as the AUC. The 
sensitivity defined how many positive results occurred among the 8600 
test wetland sites (Equation 2) and the specificity defined how many 
correct negative results occurred among the 8600 non-wetland test sites 
(Equation 3).

Sensitivity = TP/P = TP/(TP + FN)	 Equation 2

Specificity = TN/N = TN/(FP+TN) = 1-sensitivity,	 Equation 3

where P is positive and N is negative, TP is true positive and FP is false 
positive, and TN is true negative and FN is false negative. 

To add to the comparison of the two models, we plotted a correlation 
between probabilities as outputs from each approach. This was further 
complemented and quantified using Cohen’s kappa statistic to provide 
a statistical measure of agreement between the BN probability layer and 
the LR probability layer.50 Using a determined threshold, the BN and LR 
probability outputs were transformed into two binary (wetland versus 
non-wetland) data sets for an agreement comparison. 

To assess model usefulness for predicting wetland occurrence and extent, 
we generated 1000 random points across 20 classes of probability (i.e. 
5–10%, 10–15%, 15–20%, etc.) and used Hawth’s tools35 to analyse the 
trend in accuracy in predicting wetland occurrence and extent. Wetland 
occurrence accuracy was determined by assessing whether a point 
occurred in a wetland area and confirmed using satellite imagery (Spot5 
2009; Google EarthTM). Here, each point was recorded as either falling 
within a wetland clearly identifiable on the imagery, or not, drawing on 
previous experience gained in desktop wetland delineation. The wetland 
extent accuracy was determined using the test wetland data set to obtain a 
probability value versus wetland extent area curve i.e. wetland extent area 
covered at increasing probability value intervals (i.e. 0–100%, 5–100%, 
10–100%, etc.). 

Results
The maximal PCA accounted for 53.66% of the cumulative variance in 
axes 1, 2 and 3, with high levels of correlation (i.e. redundancy) between 
variables originally considered. The co-linearity condition number of the 
first PCA iteration was 37.9, exceeding the critical value of 10.0.37 An 
example of this redundancy was the high correlation (r2<-0.9) between 
the clay and altitude variables. The clay variable was eliminated from the 
PCA as a result of this correlation, and because the altitude variable had a 
higher spatial resolution and accounted for more variation. Following the 
first iteration of the PCA, flow direction, flow accumulation, soil moisture 
and aspect (modified to ordinal variables) were eliminated because of 
their short vector length, which signifies only a small influence on the 
determination of wetland probability. In the second PCA iteration, the 
temperature variables (winter heat units, summer heat units, and mean 
annual temperature) were highly negatively correlated (r2<-0.9) with 
altitude, indicated by the ±180° angle separating the vectors. Because 
mean annual temperature accounted for more variation and had a higher 
spatial resolution, the additional temperature variables were eliminated. In 
the third PCA iteration, the biplot vectors of the groundwater and slope 
(DEM-derived32) variables displayed virtually no angle between them (i.e. 
they were correlated), resulting in the elimination of groundwater because it 
was the variable with the shortest vector and smaller variable PCA loading. 
In the final PCA iteration, evaporation was highly correlated (r2=0.895) 
with the evapotranspiration variable. Evaporation was eliminated because 
it had the lower variable PCA loading of the two. Following the elimination 
of the evaporation variable, the data set’s co-linearity condition number fell 
below the recommended critical threshold value.43 After these iterations, 
the maximal data set was reduced to eight ordinal variables, with a 
resultant co-linearity condition number of 5.3. The final iteration of the 
PCA accounted for 69.15% of the cumulative variance in axes 1, 2 and 3 
(Figure 2; Table 2), with the remaining input variables into the models being 
Mean Annual Precipitation, Slope (degrees), the 20-m DEM (hereafter 
referred to as ‘Altitude’), Mean Annual Solar Radiation (hereafter referred 
to as Solar Radiation), Soil Depth, Evapotranspiration, Terrain Units and 
Landform. Following the PCA elimination process, Hydromorphic Soils 
was the only nominal variable added post-PCA. The final spreadsheet for 
both models was therefore based on a common predictor data set for nine 
variables (eight quantitative variables and one nominal variable).

Table 2:	 Eigenvector scores for the remaining ordinal input variables for 
Axes 1 and 2

PCA variable loadings Axis 1 Axis 2

Soil depth 0.483 -0.234

Terrain units -0.369 0.222

Solar radiation -0.148 -0.650

Mean annual precipitation -0.181 0.271

Evapotranspiration 0.447 0.154

Altitude -0.436 -0.509

Slope -0.398 0.271

Landform -0.167 0.212

PCA, principal component analysis

The BN model was informed by learning the cases in the database 
(case learning file) of the remaining input variables (Figure 3). The case 
learning file formed the central input for calculating the prior probabilities 
of all the parent node variables in the BN, as well as the final conditional 
probabilities. The output of the BN was a table with the conditional 
probabilities of wetland probability given the state of each input variable. 
The input variables reduced to qualitative states (high, medium, low) 
formed the parent nodes and the ‘probability of wetland occurrence’ 
formed the child node. The LR model to estimate probability of wetland 
occurrence (i.e. wetland = yes or no) was significant for all nine 
variables (p<0.05) (Table 3).
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Figure 2:	 Biplot of the final principal component analysis (PCA) showing eight variables and with the co-linearity coefficient reduced to 5.3. Eigenvalues for 
Axes 1 and 2 (cumulative percentages of variation accounted for in brackets) are 2.51 (31.43%) and 1.60 (51.43%), respectively.

Landform

Soil_depth

Hydromorphic_soil

Terrain_units

Altitude

Solar_radiation

Slope_Degree

Mean_precip

High	 22.0
Medium	 42.0
Low	 36.0

High	 5.56
Medium	 19.3
Low	 75.1

High	 12.8
Medium	 36.9
Low	 50.3

YES	 11.4
NO	 88.6

High	 14.2
Medium	 45.4
Low	 40.4

High	 33.7
Medium	 40.7
Low	 25.6

High	 2.45
Medium	 66.2
Low	 31.3

High	 9.47
Medium	 63.7
Low	 26.8

High	 24.9
Medium	 38.2
Low	 36.9

Evapotranspiration

Prob_of_wetland_occurence

High	 53.0
Low	 47.0

Figure 3:	 Diagram illustrating the Bayesian network structure used in calculating the conditional probabilities. The outer parent nodes are the remaining input 
variables and the child node is the ‘probability of wetland occurrence’.
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Table 3:	 Coefficients and standard errors for variables used in the 
logistic regression model 

Variable Coefficient Standard error

Constant 4.347 0.001

Altitude 0.001 0.001

Evapotranspiration 0.018 0.002

Hydromorphic soil 0.124 0.043

Landform -0.113 0.007

Mean annual precipitation 0.002 0.001

Slope -0.129 0.003

Soil depth 0.382 0.021

Solar radiation -0.451 0.017

Terrain units 0.668 0.013

p<0.005 for all variables

The final outputs of the BN and LR models were two raster layers with 
the pixel values representing probabilities of being a wetland at a spatial 
resolution of 20 m (Figure 4; Table 4). Probability values below 0.50 
accounted for over 60% (~57  000 km2) of the total KZN area, while 
probability values of 0.80 and above accounted for only approximately 
4–6% (3700–5500  km2) of the total KZN area (Table 4). The BN 
probability map appeared to be more conservative in estimating area 
than the LR map, for which, at a threshold of 0.6, the percentage area 
covered by the LR model was 0.88% more than the area covered by the 
BN model, even though probabilities from the BN and LR models were 
generally strongly correlated (r2=0.79). For Cohen’s kappa statistic, 
both LR and BN layers were transformed into two binary data sets using 
a 0.6 probability cut-off. Based on Cohen’s kappa result, observed and 
predicted wetland occurrences were more than 78% similar in all cases, 
with a 91% agreement between the LR- and the BN-derived probability 
layers (Figure 5).

LR Probability layer

Legend

N

Scale 1:5 000 000

Scale 1:500 000 Scale 1:500 000

Scale 1:5 000 000

LR BN

Probability values

Value
High : 0.98

Low : 0.02

BN Probability layer

Figure 4:	 Comparison of the logistic regression (LR) and Bayesian network (BN) probability outputs ranging in scale from 1:5 000 000 (top) to 1:500 000 (bottom). 
Pixel values range from 0.02 to 0.98, in which the higher the probability values of a pixel, the greater the likelihood of wetland occurrence.
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Table 4:	 Percentage area of KwaZulu-Natal covered by wetlands at 
different probability value thresholds as determined by the 
logistic regression and Bayesian network models

Probability threshold
Area covered (%)

Logistic regression Bayesian network

0 100 100

0.1 40.72 42.34

0.2 34.26 34.21

0.3 28.04 28.39

0.4 22.90 22.38

0.5 16.44 16.19

0.6 11.65 9.96

0.7 7.51 5.78

0.8 4.23 2.79

0.9 1.68 0.98

1 0 0

Model validation and assessment

Results from the ROC curves indicated that the AUC for the predicted 
probabilities of the BN model and LR model were 0.853 (SE=0.00287; 
95% confidence level = 0.847–0.858) and 0.840 (SE=0.00301; 95% 
confidence level = 0.835–0.846), respectively (Figure 6). An AUC of 1 
indicates perfect prediction, whereas an AUC of 0.5 indicates completely 
random binary prediction. Although there was a marginal difference in the 
AUC results for the BN and LR models, the difference was not pronounced 
enough to conclusively state that one model has outperformed the other 
in predicting wetland occurrence. ROC analyses were performed using 
the test wetland data set to compare the predicted probabilities derived 
from a simple binary LR to the derived and predicted probabilities from 
the BN. The ROC analyses performed on the BN probability layer and the 
LR probability layer indicated that both models predicted the occurrence 
of wetlands relatively similarly51 (Figure 6). The ROC analysis determined 
that the criterion model probability threshold for both models (at which 
probability both the sensitivity (71.6) and specificity (81.2) are the 
highest as a pair) was greater than 0.60; i.e. if the probability values in 
both layers were split into binary classes of wetland and non-wetland 
areas, then 0.60 would be the ideal split to maintain good predictability 
of wetland and non-wetland occurrence. 

Areas with probability values greater than 0.60LR LRBN

Legend Legend

0.0-0.6 0.0-0.6

0.6-1.0 0.6-1.0

Scale 1:250 000 Scale 1:250 000

Figure 5:	 Comparison of likelihood of wetland occurrences for probability > 0.6 for logistic regression (LR) and Bayesian network (BN) models.
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Figure 6:	 Receiver operating characteristic curves comparing the prediction 
accuracy of the Bayesian network (BN) model with the logistic 
regression (LR) predictive model.

The trend analysis results indicated that there was a decreasing trend 
in accuracy of mean wetland extent area covered with an increase in 
probability of wetland occurrence (Figure 7). However, with the increase 
in probability, there was an increasing trend in accuracy of correctly 
predicting the presence of a wetland. The probable explanation for 
this trend is that the average wetland extent is made up of a mosaic 
of probability values, with the core being predicted by high probability 
values and the outer extents by lower probability values. Therefore 
lower probability ranges will occupy larger area extents but with a lower 
accuracy in identifying a single wetland area, whereas higher probability 
values will more likely identify wetland location but at the cost of 
accurately identifying the wetland’s extent (Table 4).

Discussion
Current wetland mapping approaches are typically based either on aerial 
photography and/or satellite imagery interpretation or classification of 
satellite imagery, the latter involving complex methodologies utilising 
spectral ratios, indexes and values which are classified to identify 
wetland areas. It is common for wetland maps to under-represent certain 
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areas for various reasons (errors, lack of resources, misclassification), 
and therefore these layers could help minimise these areas of under-
representation. Consequently, resultant maps may suffer from pitfalls 
that include not linking wetland polygons that are fragments of larger 
wetland systems, and wetland omissions because of seasonal effects on 
satellite images. To compensate for these pitfalls, many methodologies 
draw support from ancillary data to improve the accuracy of wetlands 
mapped and classified.14,18 Topological entities are commonly used as 
ancillary data and have been valuable in the success of many other 
wetland mapping approaches.5,14,18,52-55 

In this study, we assessed two methods that use topological and climatic 
variables as the basis for predicting the probability of wetland occurrence 
over a large spatial domain. The final wetland probability layers had 
good agreement with the current regional wetland layer and literature 
highlighting regional priority wetland areas.26,34 Output layers indicated 
new areas of wetlands and how wetland fragments are likely to be part 
of larger but fragmented wetland systems. We acknowledge that using 
the PCA approach resulted in variables selected for the correlative rather 
than causative link to wetland presence. This was a necessary trade-
off that ignores the complexities and subtleties of topographic influence 
on wetland presence, but allows for greater objectivity and repeatability 
in model development; both methods do not require an understanding 
of the complex interactions and relationships of the environmental 
components that drive wetland formation and function. It is also to be 
expected that the models will predict different hydrogeomorphic wetland 
types with different levels of accuracy because of the different ways in 
which such environmental drivers interact, and at different scales, within 
the landscape. Moreover, the variables relevant to this model may not be 
entirely transferrable across different regions of South Africa because 
of possible differences in wetland ontology (geology, climate) between 
regions. A clear identified research need is therefore to establish suitable 
predictor variable sets across different climatic regions of South Africa, 
as the basis for developing regional probabilistic models. 

There are advantages and limitations inherent in each approach. 
Uusitalo46 reports that a BN can only deal with continuous data in a 
limited manner, and that there is no satisfactory automatic discretisation 

technique or method for data translation to qualitative states in BNs. The 
Jenks natural break interval method45 was used to discretise the data into 
qualitative states in this study, but it is important that future researchers 
adopting this approach should pay careful attention when defining value 
ranges of continuous data to ensure that the intervals signify important 
breaks within data, so that the generalisation caused by discretisation 
is minimised. Conversely, the LR approach did not require the data to 
be discretised, and this method provided simpler and more integrated 
handling of continuous data than the BN approach. Given such trade-
offs, perhaps the most promising approach would be to use ‘ensemble’ 
or consensus modelling, in which the outputs of both models are 
combined such that the probabilities of occurrence of both algorithms 
are used to provide a combined output with a lower mean error.56 

The probability layers from either method have the potential to not 
only identify new wetland areas, but to guide the classification of 
satellite imagery by showing highly probable wetland areas, thereby 
avoiding the misclassification of pixels or the high errors associated 
with spectral confusion. However, we note that there will inevitably be 
trade-offs between the accuracy in the model’s prediction of wetland 
extent and wetland occurrence. While the cut-off point for creating a 
useable wetland map is dependent on the user, we recommend 0.6 as 
a threshold for mapping probability only, but 0.8 when mapping extent 
and probability. For example, if the user is interested in using the model 
to identify new wetland areas, and is not concerned with the model’s 
ability to predict wetland extent, the user would opt for a higher cut-off 
probability value, which produces a wetland map with a higher accuracy 
in predicting the wetland occurrence and a low accuracy in modelling 
the correct wetland extent. Using such ancillary data to support wetland 
mapping efforts has the potential not only to improve general land-cover 
assessments but also to better establish important spatial priorities for 
wetland conservation and management through improved conservation 
target estimation when measuring the current status of wetlands in an 
area in terms of wetland loss and current state of integrity. The final 
output has further applicability in already modified areas because 
the final model output predicts the likelihood of wetland occurrence 
regardless of any land-cover transformation. Predicted occurrence of 
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Figure 7:	 Accuracy in terms of model ability to predict wetland extent and occurrence with the increase in probability percentage. An optimal trade-off value 
exists at the intersection of extent (A) and accuracy (B) to produce a useable wetland map output.
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wetlands without the effects of land transformation has implications 
both in establishing the historical extent of wetlands in regions of 
extensive land-cover transformation, as well as in establishing to what 
extent seemingly unrelated wetland polygons are in fact components of 
single larger systems now fragmented. We conclude that the methods 
assessed in this study have the potential to generate useful ancillary 
data to improve wetland mapping accuracy by identifying new wetland 
areas and providing insights on linkages between wetland fragments, 
but we recommend further ground truthing to assess such layers. From 
a pragmatic and computational perspective, our preference would be 
to use the LR approach as the basis for developing regional wetland 
probability maps for additional regions in South Africa.
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