Supplementary material to: Maharaj A, Wagh V. S Afr J Sci. 2016;112(11/12), Art. \#2016-0139, 6 pages.
How to cite: Maharaj A, Wagh V. Formulating tasks to develop HOTS for first-year calculus based on Brookhart abilities [supplementary material]. S Afr J Sci. 2016;112(11/12), Art. \#2016-0139, 1 page. http://dx.doi.org/10.17159/sajs.2016/20160139/suppl

Appendix 1: Additional sample tasks

Task 8: Ability to critically evaluate a presented solution to a problem/question
Examine critically the following question and a solution presented by a student. Indicate clearly your comments on the presented solution with justification. Also present your alternative solution to the question.
Question: Find the derivative of $x \sin x$ with respect to $x$
Solution: $\frac{d}{d x}(x \sin x)=\frac{d}{d x}(x) \frac{d}{d x}(\sin x)=1 \cos x=\cos x$

Task 9: Ability to use with reasonable skill available tools for mathematical exploration
Use the graph which is a representation of the function $f^{\prime}(x)$ to determine features related to the relative extrema and concavity for the original function defined by $y=f(x)$


Task 10: Ability to identify linkages between groups of concepts and interpret these linkages in the context of a model
For functions defined by equations of the form $y=f(x)$, what could be concluded from the following?

1. $f(0)$
2. $f(x)=0$
3. the rational function defined by $y=f(x)$ has domain $(-\infty,-1) \cup(-1,2) \cup(2, \infty)$
4. $\lim _{x \rightarrow 2^{+}} f(x)=\infty$
5. $\lim _{x \rightarrow \infty} f(x)=2$
6. $f^{\prime}(x)$
7. $f^{\prime}(x)<0$ on the interval $[a, b]$
8. $f^{\prime \prime}(x)<0$ on the interval $[c, d]$
9. $f^{\prime \prime}(m)<0$ for some value $m$ in the domain of the function $f$

Task 11: Ability to identify linkages between groups of concepts and interpret these linkages in the context of a model
Use appropriate geometric figures to interpret and evaluate the following definite integral

$$
\int_{0}^{3}\left(4-\sqrt{9-x^{2}}\right) d x
$$

