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Sunspot numbers:  
Implications on Eastern African rainfall

Following NASA’s prediction of sunspot numbers for the current sunspot cycle, Cycle 24, we now include 
sunspot numbers as an explanatory variable in a statistical model. This model is based on fitting monthly 
rainfall values with factors and covariates obtained from solar–lunar geometry values and sunspot numbers. 
The model demonstrates high predictive skill in estimating monthly values by achieving a correlation 
coefficient of 0.9 between model estimates and the measurements. Estimates for monthly total rainfall for the 
period from 1901 to 2020 for Kenya indicate that the model can be used not only to estimate historical values 
of rainfall, but also to predict monthly total rainfall. We have found that the 11-year solar sunspot cycle has 
an influence on the frequency and timing of extreme hydrology events in Kenya, with these events occurring 
every 5±2 years after the turning points of sunspot cycles. While solar declination is the major driver of 
monthly variability, sunspots and the lunar declinations play a role in the annual variability and may have 
influenced the occurrence of the Sahelian drought of the mid-1980s that affected the Sahel region including 
the Greater Horn of Africa. Judging from the reflection symmetry, the trend of the current maximum and the 
turning point of the sunspot minimum at the end of the Modern Maximum, with a 95% level of confidence, 
drought conditions similar to those of the early 1920s may reoccur in the year 2020±2. 

Introduction
We begin by describing briefly the three predictors we have used in this study. These are monthly values of the 
sunspot numbers, maximum lunar declination and solar declination.

Sunspot numbers
The number of sunspots appearing on the solar surface has been recorded each month through observations and 
calculation for a long time. Currently, sunspot numbers are clearly headed towards a minimum given the trends and 
the near symmetry of the current maximum, typically referred to as Modern Maximum, which comprises Cycles 
17 to 23 (Figure 1). The current cycle, Cycle 24, will probably mark the end of the Modern Maximum, with the sun 
switching to a state of less strong activity. While there are three main groups of prediction methods according to 
Kristof1 – precursor methods, extrapolation methods and model-based predictions – the National Aeronautics and 
Space Administration (NASA) and the Solar Influences Data Analysis Center (SIDC)2 have finally used the precursor 
method and made their predictions for Cycle 24. The smoothed sunspot numbers and predictions can be seen 
in Figure 1.
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Figure 1:	 Smoothed sunspot numbers of Cycles 14 to 24 showing the predicted (dotted) segment. 

Sunspot numbers have been associated with a change in climate, including severe climatic conditions during 
the Maunder Minimum – the period 1640–1705 which was characterised by a conspicuous lack of sunspots.3 
Total solar irradiance increases when the number of sunspots increases. Total solar irradiance is higher at solar 
maximum, even though sunspots are darker (cooler) than the average photosphere. Meehl and Arblaster4 analysed 
sea surface temperatures from 1890 to 2006. They then used two computer models from the US National Center 
for Atmospheric Research to simulate the response of the oceans to changes in solar output. They found that as 
the sun's output reaches a peak, the small amount of extra sunshine over several years causes a slight increase 
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in local atmospheric heating, especially across parts of the tropical and 
subtropical Pacific where sun-blocking clouds are normally scarce. The 
small amount of extra heat leads to more evaporation, producing extra 
water vapour. In turn, moisture is carried by trade winds to the normally 
rainy areas of the western tropical Pacific, fuelling heavier rains. 

In 2008, White and Liu5 provided evidence that the 11-year solar cycle 
may be the trigger for El Niño and La Niña events by using harmonic 
analysis on observed and model data. A model such as the one developed 
in this study captures interannual rainfall variability by involving sunspot 
numbers as predictors. The dotted line in Cycle 24 represents NASA’s 
predicted sunspot numbers for 2012–2020. 

Sunspot Cycle 24 is the last cycle of the current maximum while the 
dotted line shows the sunspot numbers that NASA have predicted 
for 2013–2020. The current prediction for Sunspot Cycle 24 gives a 
smoothed sunspot number maximum of about 69 in 2013. Hathaway 
et al.’s6 method of predicting the behaviour of a sunspot cycle is fairly 
reliable once a cycle has reached about 3 years after the minimum 
sunspot number occurs. 

Maximum lunar declination 
Varying angular lunar velocity caused by the lunar node cycle is 
considered likely to influence natural forcing of the El Niño Southern 
Oscillation (ENSO) by lunar tidal forces. Cerveny and Shaffer7 examined 
a possibility that lunar tidal forces act as an external forcing mechanism 
in regulating sea surface temperatures tied to ENSO events. They 
obtained a statistically significant correlation between maximum lunar 
declination (MLD) and both equatorial Pacific sea surface temperatures 
and South Pacific atmospheric pressure (the Southern Oscillation Index) 
for the period 1854–1999. High MLDs were associated with La Niña 
conditions, while low MLDs were associated with El Niño conditions. 
Under high MLD, circulation of the Pacific gyre is enhanced by tidal 
forces, inducing cold-water advection into the equatorial region that is 
characteristic of La Niña conditions. Under low MLD, tidal forcing is 
weakened, cold-water advection is reduced, and warmer sea surface 
conditions characteristic of El Niño prevail. Together with the solar cycle, 
MLDs are used to capture interannual rainfall variability.

Solar declination
Earth's axis of rotation is tilted 23.5° away from the plane perpendicular 
to Earth's orbit while its axis points in the same direction as Earth orbits 
the sun. Therefore, the solar declination angle determines the seasons, 
which are characterised by varying solar irradiance, varying length of 
day and an annual rainfall pattern. Solar declination was used to generate 
seasonal variation of rainfall.

Materials and methods

Data
The Kenya Meteorological Service8 (KenMet) supplied the rainfall data 
(rain gauge measurements) taken at Dagoretti and Jomo Kenyatta 
Airport from 1959 to 2005. The Climate Research Unit of the University 
of East Anglia (UK) provided research data sets for the Kenyan region.9 
We extracted monthly and annual rainfall totals from 1901 to 2000. The 
country aggregation is based on the TYN_CY_1_1 data set. This data set 
is referred to here as CRU.K.

NASA provided solar and lunar declination values obtained from 
their ephemeris software.10 The National Oceanic and Atmospheric 
Administration’s National Geophysical Data Center provided sunspot 
numbers, including NASA’s prediction. The international sunspot number 
is produced by SIDC2 at the World Data Center for the Sunspot Index at 
the Royal Observatory of Belgium.

The model
Model SMS12.12 is of the form: 

Response variable ~ predictor(s)	 Equation 1

in which the response variable is the monthly total rainfall and the three 
predictors are solar declination, maximum lunar declination and sunspot 
numbers. This model design is based on fitting a generalised linear 
model (GLM) of the Tweedie11 family to Kenya’s monthly total rainfall 
distribution values from 1951 to 1980. A fitting procedure involved 
obtaining beta values which satisfy the linear equation:

yi = βi xi
T +ei	 Equation 2

where yi is the estimated monthly total rainfall values for each of the three 
predicting factors, xi, and ei is the fit error in the estimate. In this study, 
we fitted first-order factors and therefore T=1. Statistical software was 
used to fit a GLM and obtain the initial estimate of beta values for the fit. 
The fitting procedure comprised two main steps:

Step 1: Fitting a GLM
We computed an initial estimate set of beta values using the GLM of 
the Tweedie family. This family of exponential dispersion models is 
characterised by the power mean–variance relationship: 

V(μ) = μp	 Equation 3

Thus variance V is a function of the mean (μ) and p is the power 
variance of the Tweedie distribution calculated by means of a routine 
in an R-program called tweedie.profile. To specify the Tweedie, the 
mean (μ), the dispersion parameter (ф) and the variance power (p) 
are required. Standard algorithms in R-software calculate μ and the 
maximum likelihood estimate is used to work out ф and p. A GLM fit 
on the rainfall distribution obtains initial estimates for a fit parameter, α, 
and a dispersion parameter, ф. At this point it is possible to use these 
beta values to calculate rainfall estimates for the GLM fit. However, 
rainfall data is correlated and therefore it is necessary to fit a generalised 
estimating equation to account for the correlation within the variable 
being fitted. 

Step 2: Fitting a generalised estimating equation
To fit a generalised estimating equation, it is necessary to use a 
correlation matrix which best describes the manner of correlation to 
calculate new beta values. In this case we used estimates obtained in 
Step 1 for the fit parameter α, and the correlation matrix AR(1) which is 
defined as α|u–v|

α|u–v|

1,
Ru,v = { u = v,

,  otherwise 	 Equation 4

In matrix notation this becomes

Ri =

1
α
α2

α2

α
αn–1

αn–1

αn–2

α
1

1

1

α

α
	  Equation 5

New beta estimates are thus obtained which are then used to estimate 
monthly totals by use of Equation 1.

Results and discussion

Model results
Model SMS12.12 was trained on a 30-year CRU.K data set (1951–1980) 
and tested on two segments of data: 1901–1950 and 1981–2000. 
Predictors, solar declination, maximum lunar declinations and sunspot 
numbers used were mean values for each month. Figure 2 shows how 
SMS12.12 demonstrates prediction stability with time. 

Methods used for avoiding artificial prediction skill included using 
independent training and test data sets, cross-validation and hindcasting. 
Forecast skill depends on the amount of lead time, the number of 
forecast months and the strength of the relationships between estimates 
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and rainfall records. Each value plotted in Figure 2 represents a Pearson 
product-moment correlation coefficient between estimate and CRU.K 
value for corresponding months in the year. Correlation values remained 
above 0.5 throughout the 100-year period, except for 1925 (Figure 2). 
The probability of obtaining a correlation value above 0.5 when the 
model is used in estimating projected values is therefore 99 out of 100 
years (0.99). An adjusted R2-value of 0.62 was obtained between CRU.K 
and model estimates during the training period and reduced values 
of 0.52 and 0.56 were obtained from the test data sets. SMS12.12 
shows stability in estimating monthly total rainfall when model monthly 
estimates are compared with corresponding CRU.K values. The average 
correlation for the period 1901–2000 is 0.8. The contributions of the 
individual predictors to the variability of the predictand were 59.7% for 
solar declination, 9.4% for sunspot numbers and 8.9% for maximum 
lunar declination. Thus solar declination played the dominant role 
in monthly rainfall variability. The remaining 22% of the variability 
remains unexplained.
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Figure 2:	 Correlation between SMS12.12 estimates and CRU.K monthly 
values for each year, showing SMS12.12 stability.

Monthly rainfall projection
SMS12.12 was then used to estimate monthly rainfall totals for the 
period 1901–2020. Figure 3 shows monthly estimates so obtained.

Monthly totals were then aggregated into annual values and results 
standardised by mean and standard deviation. The results are shown in 
Figure 4, in which model results have been plotted together with CRU.K 
values for comparison. Model SMS12.12 estimates indicate elevated 
monthly totals (>+1 standard deviation) in the periods 1912–1913, 
1931–1932, 1951–1952, 1987–1988, 1993–1994, 1997–1998 and 
2005–2006, and depressed monthly rainfall (<-1 standard deviation) in 
1917, 1937–1938, 1947–1948, 1982–1985,1992–1993, 2002–2004, 
2010–2011 and 2019–2020. 

Model results were then validated with records from the United 
Nations Development Programme.12 Below average annual total rainfall 
was reported to have occurred in 1928, 1933–1934, 1937, 1939, 
1942–1944, 1947, 1952–1953, 1955–1957, 1975–1977, 1980–1985, 
1991–1992, 1999–2000 and 2004. Other below average values were 
recorded by KenMet in 1965, 1973–1974, 1976 and 1992–1993. 
Floods recorded by KenMet occurred in 1961, 1963, 1977–1978 and 
1997–1998. Projected model estimates indicate below normal rainfall 
in 2009–2011, 2015 and 2019–2020, with values within one standard 
deviation. Above normal rainfall may be expected in 2012–2014, 2016 
and 2018, with values within two standard deviations. Estimates were 
calculated at a 95% confidence level.
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Figure 4:	 Projected annual total rainfall anomalies determined by model 
SMS12.12 for the period 1901–2020. SM12.12 estimates are 
plotted together with CRU.K values for comparison.

Model diagnostics
Probabilities of rainfall volumes were calculated in order to judge the 
accuracy of the model estimates. The results are shown in Figure 5. 
Estimates are comparable at all stages of model development as shown 
by hindcasting, training (fitting) and forecast stages as well as with the 
1901–2000 climatology. Correlation values between the model and 
CRU.K data are shown in Table 1 for the hindcast, training and forecast 
stages. Model estimates are therefore reliable.

Sunspot numbers and annual rainfall
Rainfall for Kenya in the Modern Maximum indicates a peak trend that 
corresponds to that of sunspots, as shown in Figure 6. Figure 6 shows 
standardised values of annual totals of rainfall and smoothed sunspot 
numbers. A best fit trend line of peak annual rainfall is also shown. 
The trend has a peak in the 19th sunspot cycle centred around 1961. 
Variability in annual rainfall shows reflection symmetry in the year 
1961, such that Cycles 18 and 20 are object and image, respectively, 
in Figure 6. 
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Figure 3:	 Projected monthly total rainfall values determined by model SMS12.12 for the period 1901–2020 with a 12-month moving average trend line.
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Figure 5:	 Probability of rainfall amounts using hindcast, SM12.12 fitting, 
forecast and climatology.

Table 1:	 Correlation coefficients between model SMS12.12 and CRU.K 
data for hindcast, training and forecast stages

Segment Coefficient

1901–1951 (hindcast) 0.90

1951–1981 (training) 0.92

1981–2000 (forecast) 0.84

We refer to events occurring prior to 1961 as objects of corresponding 
events after 1961, which are images. Object and image pairs labelled c, 
d, e and f are cycle pairs: 17 and 21, 16 and 22, 15 and 23, and 14 and 
24. Object and image cycle pairs have similar rainfall peak amplitudes. 
Reflection symmetry demands that if sunspot turning points lead rainfall 
events in the objects side, the reverse will happen in the image side. 
While the cause of the distribution symmetry is still under investigation, 
it is what is observed from Figure 6. At least three sunspot turning points 
are outstanding. The first one is the heavy rainfall of the early 1960s 
corresponding to the maximum in Cycle 19, the second is the drought 
of the mid-1970s and the minimum between Cycles 20 and 21, and the 
third corresponds to the great Sahelian drought after the passing of the 
minimum between Cycles 21 and 22. From Figure 6 one can identify a 
turning point for each event of severe hydrology in Kenya, suggesting 
that sunspot numbers had an influence on rainfall as was found by Meehl 
and Arblaster4. Now that sunspots are headed for a minimum at the end 
of the Modern Maximum, one may expect fewer events of high rainfall 

and perhaps a prolonged drought of the Sahelian type. Judging from the 
symmetry of the Modern Maximum, a drought of the type experienced 
in the early 1930s will most likely occur in 2020±2 after the passage 
of the current Cycle 24. This observation is also consistent with model 
SMS12.12 results as shown in Figure 4. Because Kenya’s rainfall is 
influenced by the Sahel climate, it is likely that the decline in rainfall 
volumes may be experienced in the Eastern Africa region and perhaps 
the Sahel region, including the Greater Horn of Africa. 

Summary and conclusions
This study was motivated by the desire to find out the physical causes 
of the Kenyan droughts of the early 1980s and at the turn of this century. 
The temporal distribution of sunspot numbers indicates that each turning 
point corresponds to events of severe hydrology in Kenya with a time lag 
of 5±2 years. Therefore, such events are predictable so long as sunspots 
can be predicted in advance. However, the prediction of sunspots has 
not been easy and the current prediction of Cycle 24 appears to be at 
the end of the Modern Maximum, therefore breaking the continuity. The 
current maximum is fairly symmetrical, increasing the confidence that 
sunspot activity is headed for an all time low, perhaps similar to the one 
at the beginning of the last century with a corresponding reduction in 
annual rainfall volumes. It is therefore likely that Kenya will experience 
reduced rainfall at the turn of Cycle 24 and around the year 2020±2. 

Model estimates indicate that before 2020, above average rainfall 
may be expected in the period 2013–2018 and below normal rainfall 
in 2019–2020. No sunspot numbers are available to enable estimation 
beyond 2020 using the model; in addition, the behaviour of sunspots is 
uncertain beyond Cycle 24. However, as we head towards 2020, it is 
likely that the evolution of sunspots will occur in a predictable pattern so 
that sunspot prediction will be possible. However, this observation cannot 
yet be assumed for global data sets. Furthermore, we recommend that 
future studies be done on rainfall residuals so that the seasonality factor 
is eliminated and a better indication of the influence of sunspot numbers 
can be obtained. A comparison of the results with those obtained through 
statistical downscaling methods is also recommended.
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