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Depending on one’s sources, the mathematical historical record dates back to around 1200 BCE.1,2 We are more 
familiar in the West with the seminal contributions of ancient Greece, although the mathematical heritage of the 
Islamic world from the 8th century onwards has become increasingly better known. Nevertheless, one finds, in 
many different parts of the world, engagement of a mathematical nature dating from antiquity. A further example 
relates to the Mayan civilization of central America: evidence of mathematical activity there appears to date back at 
least to 50 BCE. Similar remarks may be made in respect of mathematical developments in sub-Saharan Africa.3

While much is known, there is uncertainty about attributions of some mathematical concepts, and also of the extent 
to which communities in different parts of the world communicated with each other on topics of a mathematical 
nature. Certainly the picture that emerges is one of developments of particular concepts in multiple locations – 
sometimes contemporaneous, often at different times – with ebbs and flows in creativity, yet also with examples 
of cross-pollination. Thus the picture of a society or region operating in complete isolation, laying claim to specific 
inventions and developments, and with these ideas possibly flowing, if at all, in one direction, is at odds with the 
admittedly incomplete record. An example would be the complicated history of the concept of zero, its symbolic 
representation, and its possibly multiple origins in various parts of Asia, as well as in the Mayan civilization.1 

A striking and enduring feature of the development of mathematics is the central role played by the physical 
sciences, most notably astronomy, in motivating mathematical developments. Engineering also has played a 
significant role, spurred for example by military considerations. 

The late 17th century onwards witnessed a great flowering in mathematics, inspired by the quest for knowledge in 
the physical sciences, with central figures including Isaac Newton, Gottfried Wilhelm Leibniz and Leonhard Euler on 
topics in mechanics and astronomy, the studies of Joseph Fourier on heat conduction, and of James Clerk Maxwell 
on electromagnetism. These topics in turn paved the way in the 20th century for the paradigm-shifting theories of 
relativity and quantum mechanics. 

The intense relationship between mathematics and the physical sciences has not abated at all with the passage 
of the 20th century. Examples of groundbreaking achievements in physics that are underpinned by innovative 
mathematics include the work of astrophysicist Subramanyan Chandrasekhar, who won recognition, including a 
Nobel Prize in Physics in 1983, for his formulation of theories for the stability and evolution of stars, including those 
that subsequently undergo collapse into compact brilliant stars known as white dwarfs.

The second half of the 20th century has seen the emergence and maturation, in parallel with the advent of 
computers of ever-increasing power, of what is referred to as computational science, or scientific computing: that 
is, investigations in which advanced computing capabilities are used to understand and solve complex problems 
in the physical and biological sciences, engineering, social sciences, and a myriad of other areas. The essence 
of computational science is the development of algorithms based on mathematical models, turning these into 
computer code and other forms of software, and their use in simulation. It is now commonly accepted as a peer 
methodology alongside the traditional forms of investigation, namely experiment and theory. It is appropriate in 
considering the beginnings of scientific computing to mention the remarkable work of Ada Lovelace (1815–1852), 
among whose most important contributions was the first published description of a stepwise sequence of 
operations for solving certain mathematical problems. Her contributions included the visionary idea of a machine 
that could manipulate symbols in accordance with a set of rules, rather than simply calculate. 

Mathematics remains as central to the physical sciences and engineering as ever. It provides the language and 
the avenues through which to develop models of physical phenomena which provide insights into the phenomena 
concerned, as well as predictive capabilities that may, for example, suggest particular directions in experimental 
studies. In the world of engineering such models are central to design – that is, the development of devices 
or structures to perform a specific function. Mathematical modelling furthermore is used in the optimal design 
of processes and components through procedures that allow for sequential improvement of designs, each 
time tweaking the previous attempt in a systematic way by modifying parameters such as the geometry or 
material composition.

But the relationship between mathematics and the physical sciences and engineering is much more than that. It is 
a symbiotic one, in the sense that problems in the physical sciences provide fertile ground for the development of 
new mathematical theories and techniques. The late 20th century has been witness to particularly striking examples 
of areas of physics such as quantum field theory giving rise to significant new insights in mathematics, and to 
remarkable and deep mathematical theories.4 An acknowledgement of the two-way nature of these relationships is 
crucial to guiding the way in which we shape curricula, and design and pursue research programmes.

The interwoven nature of mathematics with the physical sciences is illustrated here through a description of the ‘life 
cycle’ of a problem arising in mechanics and materials science, and concerned with the behaviour of metals under 
various loading conditions. A researcher seeking to explore this problem from a mathematical perspective would 
begin by developing a model that captures in a mathematical sense the properties of the material. By combining 
these properties with well-established laws of physics such as conservation of mass and momentum, one obtains 
what is known as a system of partial differential equations, that is, a set of equations that describes the variation of 
quantities in position and time. These equations constitute the mathematical model in this instance.
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The next step in the process is naturally that of seeking a solution; with 
this at our disposal we would be able to use the model to explore its 
predictive capabilities, and if relevant, engage in the process of design to 
meet a specified need. Here we inevitably hit an obstacle, for it is seldom 
the case that realistic models are amenable to exact solution. What to 
do? As a first step, the mathematical process continues by finding out as 
much as possible about the solution, even without being able to construct 
it. This is known as qualitative analysis, and is an extremely important 
part of the investigation. 

The qualitative process then sets the scene for the next best thing, of finding 
an approximate solution: one that is not exact, but which is sufficiently 
close to meet our needs. It is at this point that the computer comes into 
play: the investigator develops techniques and associated algorithms, that 
is, a logical sequence of steps and calculations, which are translated into 
code, and through which the approximate solutions are generated. An 
important part of this step is validation: is the model a sufficiently reliable 
representation of the phenomenon? Then, we must undertake the process 
of verification: has the problem led to an approximation of sufficient 
accuracy? And, are we able to quantify the error in the approximation? 
The two processes of validation and verification are sometimes likened 
to asking (1) whether we have solved the right problem and (2) whether 
we have solved the problem right! Once these questions have been 
answered satisfactorily, the process of exploration or design can then 
begin in earnest.

The above description addresses through a simple example one direction 
in the two-way relationship between mathematics and the physical 
sciences. What about the other? 

Well, it may be that the process of exploration yields phenomena that 
had not been anticipated, but had perhaps been observed in simulations, 
and which were therefore not accounted for in the qualitative analysis. 
For example, under certain conditions the metal sample may undergo 
deformation in which parts of its bulk slide internally relative to each other. 
It is precisely these kinds of phenomena that led, more than three decades 
ago, to the development of a rich mathematical theory of function spaces 
which are able to capture such behaviour. This was new mathematics, 
whose genesis was the study of the physical phenomenon of plastic or 
irreversible deformation.

This example illustrates the highly interdependent nature of mathematics 
and the physical sciences. It also addresses an apparent dichotomy, 
between pure and applied mathematics, that has bedevilled mathematics 
particularly since the 20th century. Such a distinction has been largely 
absent in the development and practice of mathematics, from antiquity 
through to the early 19th century: typically mathematicians would move 
effortlessly back and forth between what we today refer to as pure and 
applied mathematics. While the dichotomy has been given credence, 
particularly in the mid- to later 20th century, there is now a growing 
acceptance that it is a counterproductive, if at all valid, dichotomy.

Rather, a more appropriate metaphor is the description by American 
mathematician Robert Zimmer of mathematics as a fabric – a woven 
artefact that derives its strength from its interconnectedness, but which 
may be weakened by a tear or gap.4 Another view of the corpus of 
mathematics is that of a grand edifice, a cathedral, with its practitioners 
working alone or in small groups on creating beautiful and functional 
components, and who would, when stepping back, be able to admire the 
totality of the creation.

Likewise, the organisational distinction between statistics and 
mathematics is unproductive and can hinder interdisciplinary work. In 
developing mathematical models, the aim is always to develop a model 
that is sufficiently realistic, yet not so complex as to be intractable, even 
computationally. There is an element of uncertainty in most physical 
processes and phenomena, which is not captured by purely deterministic 
models. In this context, uncertainty quantification has become a major 
area of endeavour, and one in which there is a healthy interaction between 
mathematicians, statisticians and probabilists. 

While the physical sciences provide the example par excellence of a set of 
disciplines that have a hugely fertile relationship with mathematics, they 

are not unique in this regard. Indeed, similar relationships exist between 
mathematics and areas such as chemistry, biochemistry, molecular 
biology, demography and other social sciences. Economics is another 
example: consider the mathematicians who have been awarded the Nobel 
Memorial Prize in Economic Sciences!

As with any endeavour that crosses disciplinary boundaries, the key 
challenge, over and above that of defining and formulating the problem, is 
one of navigating these boundaries in such a way as to develop an intimate 
understanding of other disciplinary ‘cultures’: ways of communicating, 
methodologies, and of understanding what is important. Such cross-
pollination requires dedicated time and energy, and the obstacles can 
sometimes be frustrating, but with patience it is a way of working that 
brings rich rewards.

As has always been the case, new times bring new opportunities. In this 
regard, the dramatic technological advances of the 20th century have 
played a major role in opening up new areas of enquiry. Mathematics, 
like all other disciplines, must be agile enough to be able to respond 
energetically to these new opportunities. 

An example is the emergence of data science as a product of the 
digital revolution – a reference to the unprecedented explosion in the 
capacity to acquire, store, manipulate and transmit huge volumes of 
data. The emergence of big data, as it is referred to, opens the way to 
new and exciting challenges across many disciplines.  These scientific 
opportunities lie in identifying and characterising previously unseen 
patterns and unsuspected relationships, being able to simulate highly 
complex system dynamics, and mapping complex states. Whatever the 
opportunities – in studying environmental change, climate forecasting 
or migration patterns, for example – these will require multidisciplinary 
approaches, and mathematics will necessarily occupy a central place in 
these collaborations. It is vital that our students and researchers be ready 
to grasp these opportunities.

What are the implications of these developments for curricula in 
mathematics? Continuous reflection is required around the question 
as to the characterisation of a well-rounded mathematics graduate in 
the modern era. It is essential that students be exposed not only to the 
manner in which mathematics is applied to other areas, but also to the 
ways in which its own development is influenced by progress in areas 
outside mathematics. Thus, the interactions between mathematics and 
other areas in the natural sciences and beyond, and the two-way nature of 
these interactions, should inform curriculum development in a direct way. 

These considerations may lead to new courses, majors and partnerships 
with other disciplines. Computation, which can aid discovery and provide 
new insights as well as serve as a functional tool, should be an integral 
part of mathematics curricula. Likewise, the place of topics such as 
uncertainty quantification and its foundational elements in randomness 
and probability should be carefully evaluated.

A certain degree of flexibility is required so that mathematicians are able 
to discern new directions and opportunities, and are willing to ensure that 
these developments influence the structure and content of curricula. The 
fundamental attributes of mathematics such as conceptual and abstract 
thinking and deductive reasoning will always be present and represent 
essential skills for any number of careers. Equally important is the need 
to convey, whether through teaching at all levels or in sharing research 
ideas, the inherent beauty of mathematics and its cultural value. 
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