The *South African Journal of Science* follows a double-anonymous peer review model but encourages Reviewers and Authors to publish their anonymised review reports and response letters, respectively, as supplementary files after manuscript review and acceptance. For more information, see <u>Publishing peer</u> review reports.

Peer review history for:

Helm CW, Carr AS, Cawthra HC, Daqm #, De Vynck JC, Gräbe P-J. A probable Pleistocene pangolin (Order: Pholidota) trackway from South Africa's Cape south coast. S Afr J Sci. 2025;121(3/4), Art. #18687. https://doi.org/10.17159/sajs.2025/18687

HOW TO CITE:

A probable Pleistocene pangolin (Order: Pholidota) trackway from South Africa's Cape south coast [peer review history]. S Afr J Sci. 2025;121(3/4), Art. #18687.

https://doi.org/10.17159/sajs.2025/18687/peerreview

Reviewer 1: Round 1	
Date completed:15 October 2024	_
Recommendation: Accept / Revisions required / Resubmit for review / Resubmit elsewhere / Decline / S	See
comments	
Conflicts of interest: None	
Does the review fall within the scope of SAJS?	
Yes/No	
Is the review written in a style suitable for a non-specialist and is it of wider than only specialist interest)
Yes/No	
Do the Title and Abstract clearly and accurately reflect the content of the review?	
Yes/No	
Does the review provide a significantly novel perspective or significant recent advances in the field?	
Yes/No	
Is the objective of the review concisely stated?	
Yes/No	
Is appropriate and adequate reference made to other work in the field?	
Yes/No	
Do current debates and points of contention receive appropriate coverage?	
Yes/No/Not applicable	
Are gaps in the literature adequately identified?	
Yes/No/Not applicable	
Does the review provide direction for future research?*	
Yes/No/Not applicable	
Are the methodology and statistical treatment appropriate?	
Not applicable/ Yes /No/Partly/Not qualified to judge	
Are the interpretations and recommendations aligned with the objective?	
Yes/Partly/No	
Please rate the manuscript on overall contribution to the field	
Excellent/ Good /Average/Below average/Poor	
Please rate the manuscript on language, grammar and tone	
Excellent/ Good /Average/Below average/Poor	
Is the manuscript concise and free of repetition and redundancies?	
Yes/No	
Is the supplementary material relevant and separated appropriately from the main document?	
Yes/No/Not applicable	
Please rate the manuscript on overall quality	
Excellent/Good/Average/Below average/Poor	

If accepted, would you recommend that the article receives priority publication?

Yes/No

Are you willing to review a revision of this manuscript?

Yes/No

With regard to our policy on '<u>Publishing peer review reports</u>', do you give us permission to publish your anonymised peer review report alongside the authors' response, as a supplementary file to the published article? Publication is voluntary and only with permission from both yourself and the author.

Yes/No

Comments to the Author:

This is a very interesting manuscript and is also the first record that I know of a probable pangolin trackway from anywhere in the world. The manuscript is well written overall, although I have made some suggested edits in the attached manuscript for you to consider.

My biggest comment is that the most widely accepted common name (and the name accepted by the IUCN Species Survival Commission Pangolin Specialist Group) for the species is Temminck's pangolin, and I recommend that you use that name rather than the older "ground pangolin". Similarly, the most recent taxonomy indicates that both Temminck's and Giant pangolin belong to the genus <i>Smutsia</i>, with only the four Asian pangolin species belonging to the genus <i>Manis</i>. This is also important because later in the manuscript you quote an article that recorded a <i>Phataginus</i> fossil from the Cape south coast, while if you use "<i>Manis temmincki</i>" then you will need to refer to this fossil as "<i>Manis</i> (<i>Phataginus</i>)" (i.e., subgenus <i>Phataginus</i>).

[See Appendix 1 for Reviewer 1's comments made directly on the manuscript]

Author response to Reviewer 1: Round 1

We were able to incorporate all of Reviewer 1's suggestions, many of which dealt with the issue of correct nomenclature.

Reviewer 2: Round 1
Date completed: 11 October 2024
Recommendation: Accept / Revisions required / Resubmit for review / Resubmit elsewhere / Decline / See
comments
Conflicts of interest: None
Does the review fall within the scope of SAJS?
Yes/No
Is the review written in a style suitable for a non-specialist and is it of wider than only specialist interest?
Yes/No
Do the Title and Abstract clearly and accurately reflect the content of the review?
Yes/No
Does the review provide a significantly novel perspective or significant recent advances in the field?
Yes/No
Is the objective of the review concisely stated?
Yes/No
Is appropriate and adequate reference made to other work in the field?
Yes/No
Do current debates and points of contention receive appropriate coverage?
Yes/No/Not applicable
Are gaps in the literature adequately identified?
Yes/No/Not applicable
Does the review provide direction for future research?*
Yes/No/Not applicable

Are the methodology and statistical treatment appropriate?

Not applicable/Yes/No/Partly/Not qualified to judge

Are the interpretations and recommendations aligned with the objective?

Yes/Partly/No

Please rate the manuscript on overall contribution to the field

Excellent/Good/Average/Below average/Poor

Please rate the manuscript on language, grammar and tone

Excellent/Good/Average/Below average/Poor

Is the manuscript concise and free of repetition and redundancies?

Yes/No

Is the supplementary material relevant and separated appropriately from the main document?

Yes/No/Not applicable

Please rate the manuscript on overall quality

Excellent/Good/Average/Below average/Poor

If accepted, would you recommend that the article receives priority publication?

Yes/No

Are you willing to review a revision of this manuscript?

Yes/No

With regard to our policy on '<u>Publishing peer review reports</u>', do you give us permission to publish your anonymised peer review report alongside the authors' response, as a supplementary file to the published article? Publication is voluntary and only with permission from both yourself and the author.

Yes/No

Comments to the Author:

TITLE: A PROBABLE PLEISTOCENE PANGOLIN TRACKWAY FROM SOUTH AFRICA'S CAPE SOUTH COAST Recommended edit to title: include "Order Pholidota" in parenthesis after the word pangolin General comments and recommendations

This was a fascinating manuscript to review, thank you for the opportunity.

Having the privilege of working very closely with Smutsia temminckii over the past 15 years, I have very little doubt that these are the tracks made from that species over the dunes of the Palaeo-Augulhas plain during the Pleistocene. I took the liberty of sending the image of the tracks to two other colleagues that have (and are still) working with the species for many years on a day-to-day basis (under strict confidentiality of this peer review process). They both agreed with your interpretation.

Many of my comments below further support your study, there are also a few editorial suggestions provided. I recommend the manuscript be published in its current form following very minor grammatical edits.

Specific comments

Line 40: check spelling "Pholidota" not "Phiolidota"

Line 42: reference to a 9th species has not been established nor accepted by the IUCN

Line 43: the accepted common name by the IUCN for Smutsia temminckii is Temminck's pangolin not ground pangolin. Smutsia is the accepted genus that differentiates the arboreal tree pangolins from the ground pangolins

Lines 202-206: Just a comment: Klein et al (2007) were very likely incorrect in assigning the fossilized remains of pangolin to the genus Phataginus, it was very likely that of Smutsia as tropical forests did not occur in the western Cape at that time. Hence, providing more evidence of Smutsia in the Cape supporting your findings. However, he supported this in an early study anyway (Line 209: Klein, 1972)

Line 211: check spelling temminckii with two "ii"s

Line 258: I do not agree with Liebenberg (2000), the claws of the hindfeet are not evident in the tracks of Temminck's, these nail-like claws are rudimentary and do not offer dorsal protection or traction but rather lateral, much like those of an elephant. Interestingly, your study indicates a type of "pigeon-toed track"

shape with the tracks curved inward somewhat – this is diagnostic of the bipedal gait of a Temminck's pangolin. The tail acts as a counter-balance and the tip does occasionally touch the surface, just as indicated in your study tracks

Line 276: Temminck's pangolin in the only species of pangolin that is bipedal

Line 280: I too do not agree with Stuart & Stuart, the Temminck's tracks are singular in lineage, one hind foot in front of another, as depicted in your study

Line 344: pace length you indicate (18-20 cm) is correct for an adult Temminck's pangolin stride when not foraging

Line 355-356: phrase repeated here

Author response to Reviewer 2: Round 1

Likewise, we incorporated Reviewer 2's suggestions. We have a minor point of disagreement with Reviewer 2's comment: "I do not agree with Liebenberg (2000), the claws of the hindfeet are not evident in the tracks of Temminck's, these nail-like claws are rudimentary and do not offer dorsal protection or traction but rather lateral, much like those of an elephant." In this case, we concur with Liebenberg (2000), and point to the illustration on page 199 of Van den Heever et al. (2024) as further evidence of hindfoot claw impressions.

Reviewer 3: Round 1

Date completed: 25 October 2024

Recommendation: Accept / **Revisions required** / Resubmit for review / Resubmit elsewhere / Decline / See comments

Conflicts of interest: None

Does the review fall within the scope of SAJS?

Yes/No

Is the review written in a style suitable for a non-specialist and is it of wider than only specialist interest? **Yes**/No

Do the Title and Abstract clearly and accurately reflect the content of the review?

Yes/No

Does the review provide a significantly novel perspective or significant recent advances in the field?

Yes/No

Is the objective of the review concisely stated?

Yes/No

Is appropriate and adequate reference made to other work in the field?

Yes/No

Do current debates and points of contention receive appropriate coverage?

Yes/No/Not applicable

Are gaps in the literature adequately identified?

Yes/No/Not applicable

Does the review provide direction for future research?*

Yes/No/Not applicable

Are the methodology and statistical treatment appropriate?

Not applicable/Yes/No/Partly/Not qualified to judge

Are the interpretations and recommendations aligned with the objective?

Yes/Partly/No

Please rate the manuscript on overall contribution to the field

Excellent/Good/Average/Below average/Poor

Please rate the manuscript on language, grammar and tone

Excellent/Good/Average/Below average/Poor

Is the manuscript concise and free of repetition and redundancies?

Yes/No

Is the supplementary material relevant and separated appropriately from the main document?

Yes/No/**Not applicable**

Please rate the manuscript on overall quality

Excellent/Good/Average/Below average/Poor

If accepted, would you recommend that the article receives priority publication?

Yes/No

Are you willing to review a revision of this manuscript?

Yes/**No**

With regard to our policy on '<u>Publishing peer review reports</u>', do you give us permission to publish your anonymised peer review report alongside the authors' response, as a supplementary file to the published article? Publication is voluntary and only with permission from both yourself and the author.

Yes/No

Comments to the Author:

The manuscript is well-written and concise, and interprets a poorly preserved fossil trackway as produced by relatives of the extant pangolin. To my knowledge, it is true that there is no ichnological record of pangolins and this is a good reason to communicate the finding. I think that the authors seize adequately the meager available evidence. I suggest acceptance after minor revision; however, I would like that the authors consider the following aspects (see also the attached file):

- 1) A more precise sedimentologic description of the block containing the footprints, especially because it is a fallen block. Dune fields are not only composed by cross-bedded dune deposits but other low-angle facies also occur.
- 2) A more descriptive and technical language is desirable in several passages.
- 3) I am not familiar with pangolins, however the reason for producing a bipedal trackway with such a high pace angulation are not explained. The pangolin trackway of Fig. 5b also display a difference related to the presence of pairs that are not seen in the fossil example.
- 4) Alternative producers for the trackway include only quadrupedal mammals, why not a bipedal producer like a running bird for example?

[See Appendix 2 for Reviewer 3's comments made directly on the manuscript]

Author response to Reviewer 3: Round 1

We incorporated almost all of Reviewer 3's suggestions. An exception involves the Marchetti et al. (2019) reference which Reviewer 3 kindly provided. We have chosen not to include it, as we already have a reference by Falkingham and Gatesy (2020) which discusses the paper that Reviewer 3 suggested (and it is in the same journal, Earth-Science Reviews). We thought that including both references would be redundant. The Falkingham and Gatesy paper is titled: "Discussion: defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present by Lorenzo Marchetti et al."

Several of Reviewer 3's comments related to the double-blind anonymised nature of the review, and were therefore not addressed. We have kept our manuscript 'blinded'', as required.

Author response: Other additions

All changes have been highlighted in yellow, with explanatory comments wherever appropriate in the right margin. One reference has been updated, one new reference has been added, and one reference has gone from 'under review' to 'in press', and publication is apparently imminent.

[See Appendix 3 for the Author response to reviewers made directly on the revised manuscript]

1	A PROBABLE PLEISTOCENE PANGOLIN TRACKWAY FROM SOUTH
2	AFRICA'S CAPE SOUTH COAST
3	
4	Abstract
4 5	
5 6	A fossil trackway, attributed to a probable pangolin trackmaker, has been identified on a
7	Pleistocene aeolianite surface of the Waenhuiskrans Formation in the Bosbokfontein Private
8	Nature Reserve on South Africa's Cape south coast. The trackway comprises eight tracks and
9	two probable tail traces. This appears to be the first description of a pangolin trackway in the
10	global fossil record. The trackway was probably registered during Marine Isotope Stage 6 or 5.
11	Trackway assessment and interpretation involved the integration of indigenous African and
12	western-based ichnological approaches, leading to a reasonably confident conclusion on
13	probable trackmaker identity. Alternative trackmakers (felids, viverrids and canids) were
14	considered, but excluded or regarded as less likely candidates. There are three Cenozoic body
15	fossil records of pangolins from the southwestern Cape, which have been assigned to the Giant
16	Pangolin (<i>Smutsia gigantea</i>). Only the ground Temminck's pangolin (<i>Smutsia temminckii</i>)
17	currently occurs in southern Africa. All eight extant pangolin species are considered to be
18	threatened with extinction according to the IUCN Red List of Threatened Species [™] or
19	endangered.
20	
21	Significance of the main findings
22	
23	- A Pleistocene probable pangolin trackway has been identified east of Still Bay, Western Cape
24	province, South Africa.
25	- The identification involved integrating indigenous African and western-based ichnological
26	approaches.
27	- This appears to be the first known fossilised pangolin trackway.
28	- The trackway comprises eight tracks and two probable tail traces.
29	- This discovery could draw attention to the plight of pangolins.
30	
31	KEYWORDS: pangolin, fossil tracks, aeolianites, Cape south coast, Pleistocene
32	Figures inserted at the bottom of document.

Introduction

34

35		
36	Through the Cape south coast ichnology project over 350 Pleistocene vertebrate ichnosites	
37	have been documented along a 350 km stretch of South African coastline. The majority (80%)	
38	represent mammal tracks and traces. ¹ Until now, no pangolin ichnofossils have been identified,	
39	either on the Cape south coast or, to the best of our knowledge, anywhere in the world. Here we	
40	describe a trackway on an aeolianite (cemented dune) palaeosurface in the Bosbokfontein	
41	Nature Reserve, east of Still Bay on the Cape south coast. The lines of evidence converge on a	
42	pangolin as the probable trackmaker.	
43		
44	The order Phiolidota contains a single family, Manidae, with eight established recognised, extant	
45	pangolin species from sub-Saharan Africa, India, southern China and southeast Asia to the	
46	Philippines. ² A cryptic ninth Asian species was added_detected in 2023-3, and awaits formal	
47	description. Four of these species occur in Africa - two are arboreal, and two (the	
48	ground<u>Temminck</u>'s pangolin and the giant pangolin) are ground-dwelling. The	
49	ground Temminck's pangolin (Manis <u>S</u>mutsia t emminckii, previously -or SmutsiaManis	
50	<i>temminckii</i>) is also known as <u>the ground Temminck's pangolin, the Cape pangolin, or the scaly</u>	
51	anteater, and is the only pangolin species to currently occur in southern Africa. ² In the Ju//hoan	
52	language the ground<u>Temminck's</u> pangolin is known as 'n‡hòqò', and in Afrikaans as the	
53	'ietermagog'. The latter is probably of Bantu or Tswana derivation. ⁴	
54		
55	All species of extant pangolin are threatened by poaching and habitat loss, and all are classified	
56	as v _ulnerable, e Endangered, or <u>eC</u> ritically <u>eEndangered on the IUCN Red List of Threatened</u>	
57	Species. ⁵ Pangolin meat is regarded as a delicacy, and pangolin scales are used in traditional	
58	medicines. ⁶ There is evidence that pangolins are among the most trafficked wild animals on	
59	Earth, and 400,000 African pangolins are estimated to be hunted for their meat annually. ⁷	
60		
61	The tracks described here were initially identified in 2018 by Renée Rust and family. The tracks	
62	are evident on the surface of a large fallen aeolianite block. The putative trackmaker remained	
63	enigmatic until our joint analysis in 2023. Two of us (anonymised) are indigenous Ju'/hoansi	
64	San Master Trackers, and had an immediate, strong sense of what was being examined. This	
65	presented the opportunity for indigenous and modern scientific tracking exponents to engage in	

66 a productive exchange of ideas, combining culturally honed and experientially grounded

Commented [A4]: Although these authors named this ninth taxon, it was not described as per the rules of the International Code of Zoological Nomenclature, and their 'description' does not represent a valid taxonomic act. Their proposed scientific name is therefore a *nomen nudem*, and is not valid. In short, although we know that there is a ninth extant species, it has not been formally described yet.

intuitions with modern assessment techniques. This collaborative, inter-disciplinary approach 67 68 has allowed us to arrive at a shared conclusion on probable trackmaker identity. 69 70 The purpose of this article is to describe the trackway, discuss the probable trackmaker, 71 consider alternative trackmakers, and discuss the relevance of this discovery. We also reflect on 72 the value of integrating indigenous African and western-based ichnological approaches. 73 74 **Geological context** 75 76 77 Pleistocene aeolianites (cemented dunes) of the Waenhuiskrans Formation⁸, part of the 78 Neogene Bredasdorp Group⁹, are exposed along portions of the Cape south coast of South 79 Africa, and have provided evidence for palaeo-shorelines and palaeo-coastal dune activity.¹⁰ Globally, aeolianites are fairly common in mid-latitude coastal regions between 20° and 40°.11 80 Aeolianite surfaces preserve a record of the passage of trackmakers when they comprised 81 unconsolidated sand. Throughout the Pleistocene, global sea-level change meant that the Cape 82 83 south coast landscape was dynamic. Vertebrate ichnosites encountered on these 84 palaeosurfaces would have been situated at the margin of the Paleo-Agulhas Plain, most of 85 which is presently submerged, but at times sea-level oscillations would have exposed the entire Plain.¹² In contrast, sea level was 6–8 metresmeters higher than at present at the height of the 86 Marine Isotope Stage (MIS) 5e marine transgression at ~126 ka.13 87 88 89 Optically Stimulated Luminescence (OSL) dating of onshore aeolianites has shown that most date to MIS 5 and late MIS 6.13-16 MIS 11 deposits¹⁷ and MIS 3 deposits¹⁸ have also been 90 91 identified, with a resulting age range of dated deposits presently spanning ~400-35 ka. Roberts and Cole provided an explanation for the profusion of ichnosites, postulating a combination of a 92 cohesive moulding agent (moist sand), rapid track burial (facilitated by high sedimentation 93 rates), rapid lithification (via partial solution and re-precipitation of bioclasts), and finally re-94 exposure of track-bearing surfaces through shoreline erosion.19 95 96 97 In general, the grain size of the substrate inversely influences the preservation quality of fossil 98 tracks. In Cape south coast Pleistocene deposits, tracks made on moderately coarse-grained 99 dune surfaces tend to show poor to intermediate preservation quality, certainly inferior to that

100 seen elsewhere in the world, particularly clay or mud substrates on cave floors. Belvedere and

Farlow introduced a four-point preservation scale, in which 0 represents an unidentifiable track, 101 102 and 3 represents a track of exceptional quality.²⁰ It is unusual for tracks within the Cape south coast deposits to rise above 2 on this scale. 103 104 105 Active shoreline erosion causes coastal cliffs to fragment or collapse, sometimes exposing new ichnosites, while known sites deteriorate in quality or loose blocks slump into the ocean. 106 Ichnosites are thus ephemeral. The taphonomic erosive effects of wind and water, either pre-107 108 burial or post re-exposure, can result in loss of track preservation quality. In the latter case, even if the tracks displayed anatomical fidelity at the time of re-exposure, over time their quality can 109 110 deteriorate.¹ The causes of relatively poor preservation (moderately large grain size, pre-burial 111 erosion and post-exposure erosion) may be difficult to distinguish, especially if it is not known for how long the surface has been exposed.^{21,22} 112 113 114 The Bosbokfontein tracksite is located in a remote section of coastline (Figure 1), characterised by aeolianite cliffs as high as 30 m. High tides and storm surges cause cliff sections to collapse, 115 whereupon loose blocks come to rest on unstable slopes or near the high-tide mark at the cliff 116 117 base. 118 One section in this region, situated ~8 km east of the Bosbokfontein site, had been dated prior 119 120 to our studies.¹³ Ages obtained through OSL dating produced a range of 140 ± 8 ka to 91 ± 5 121 ka. Our subsequent work has yielded several results of relevance here (in each case a five-digit number is preceded by "Leic"). The closest of these lies 4.5 km east of the Bosbokfontein site, 122 123 where an age of 126 ± 9 ka was obtained (Leic21005).²³ Other results from sites located slightly further east include 161 ± 12 ka (Leic20033), 139 ± 10 ka (Leic20031), 134 ± 9 ka (Leic21008), 124 and 109 ± 9 ka (Leic20024).²³⁻²⁵ It therefore seems likely that the Bosbokfontein track-bearing 125 surface occurs in deposits within the age range of ~161-91 ka, from MIS 6 or MIS 5. 126 127 128 **Methods** 129 130 131 Track measurements (in cm) included length, width, depth, pace length, and stride length. External trackway width was measured in cm, representing "the distance between the footfall of 132

left and right feet, measured between the outside extremities of the tracks".²⁶ Global Positioning

134 System locality readings were taken using a hand-held Garmin 60 device. Locality data were

stored with the African Centre for Coastal Palaeoscience at Nelson Mandela University, to be 135 136 made available to researchers upon request. 137 138 The tracksite was photographed, and photogrammetric analysis performed.^{27,28} 3D models were 139 generated with Agisoft MetaShape Professional (v. 1.0.4) using an Olympus TG-5 camera (focal 140 length 4.5 mm; resolution 4000 x 3000; pixel size 1.56 x 1.56 µum). The final images were 141 rendered using CloudCompare (v.2.10-beta). The tracks could be assessed by climbing to the 142 top of the block and examining the surface, but for optimal recording, including photogrammetry studies, access via a portable ladder proved useful. A DJI Mini 2 drone with an inbuilt DJI 143 144 camera/video was used to obtain further photographs. 145 146 Having viewed the tracksite in detail together, and examined photographs and photogrammetry 147 models, we reviewed our findings and opinions. This permitted further integration of the perspectives and interpretations of Master Trackers and western-trained ichnologists. 148 Furthermore, we engaged with some of southern Africa's tracking (neoichnology) experts, 149 asking for their opinions on trackmaker identity based on photographic and photogrammetric 150 151 images. 152 153 Results 154 155 156 The tracksite is located within the Bosbokfontein Private Nature Reserve, approximately 6.5 km east of the mouth of the Goukou River and the community of Still Bay. It occurs on the upper 157 158 surface of a large ex situ block, which has tumbled down the vegetated slopes from cliffs above and come to rest above the high-tide mark (Figure 2). The maximum length of the block is ~7 m, 159 with a maximum thickness of 4.5 m. However, the approximately triangular-shaped track-160 bearing surface is smaller, with maximum dimensions of ~200 x 180 cm. Slight deterioration in 161 the preservation quality of the tracks and trackway occurred since identification in 2018, but 162 assessment and interpretation of tracks and trackway morphology remained feasible. 163 164 165 The block has come to rest at an angle, and the track-bearing surface faces seaward and skywards, in a southeasterly direction. The trackway, which is ~160 cm in length, is thus aligned 166 167 in a southeast-northeast direction as the loose block is currently orientated, but this may be

subject to change following storm surges. Viewed in cross section, the block exhibits laminar

170	direction is inferred to be upslope with respect to the current orientation, and the trackway is	
171	interpreted here with the viewer facing landwards and northwest, i.e., as if the trackmaker was	
172	progressing upslope. The tracks are preserved in convex epirelief.	
173		
174	Eight tracks are evident (Figure 3), but the distal track occurs at the edge of the surface and is	
175	partial, and the two proximal tracks are partially obscured by two longitudinal 'smudges', aligned	
176	in approximately the same direction as the trackway. These are approximately 10.0–12.5 cm	
177	long and 4.5–6.0 cm wide. Tracks 3 through 7 therefore offer the best potential for analysis. The	
178	trackway curves gently to the left, such that its distal end is orientated ~30° leftward of that of its	
179	proximal end. Faint displacement rims partially encircle some of the tracks, suggesting that the	
180	tracks were registered on a slightly sloping surface.	
181		
182	Track lengths (5.5–6.0 cm) and track widths (5.0–5.5 cm) are relatively constant. Tracks 6 and	
183	7 appear slightly wider in their distal portions. Pace length in tracks 3 through 7 is relatively	
184	constant (18-20 cm). Track depth varies from 1.0 to 1.5 cm, with the distal portions of the tracks	
185	slightly deeper than the proximal portions. The external trackway width appears narrow,	
186	approximately 7.5 cm.	
187		
188		
189	Discussion	
190		
191	The prehistoric and historic distribution of southern African	
192	pangolins	
193		
194	The global record of pangolins extends back to the Oligocene Epoch ²⁹ , as reviewed by Gaudin	
195	et al. ³⁰ The prehistoric distribution of pangolins in southern Africa in the palaeontological record	
196	is meagre for the southern Cape and western Cape: there are only three reported Cenozoic	
197	fossils of pangolins from these regions. ³¹ These all represent skeletal evidence, and we are not	
198	aware of trace fossil records of pangolins in the global ichnology record. The three reported	
199	southwestern Cape fossil records are now summarised.	
200		

bedding, mostly parallel but with slight distortion in places and faint cross-bedding. Trackmaker

Hendey reported an unstudied early Pliocene pangolin from the 'E' Quarry at Langebaanweg in the Western Cape Pprovince near the South African west coast.³² Botha and Gaudin²⁹ formally described this specimen as probably ground dwelling, and possibly having engaged in a quadrupedal gait similar to that of the extant giant pangolin (*Manis-Smutsia gigantea*). It was suggested that it may have used its forelimbs more than <u>MS</u>. *temminckii*. The specimen was assigned to <u>MS</u>. *gigantea*, making it the oldest known representative of that species.²⁹

Klein et al. described a pangolin assigned to the genus *Phataginus* from the Elandsfontein Main
site in the Western Cape Pprovince on South Africa's west coast, ~350 km WNW of the
tracksite reported on here.³³ It was described as an "extralimitary species" that contributed to
the exceptional faunal diversity of the site. The age of the faunal assemblage was estimated to
be in the range of 1.0–0.6 Ma.³³

213

The closest pangolin body fossil site to the Bosbokfontein site, temporally and spatially, was reported by Klein from Nelson Bay Cave near Robberg, 180 km east of Bosbokfontein.³⁴ It was located in Late Pleistocene deposits dating to 18–16 ka. It was described as the "Cape pangolin, *Manis* cf. *temmincki*".³⁴

218

219 The southern African Holocene and historic record is more extensive for the ground Temminck's 220 pangolin. Possible sources include historical accounts, ethnographic records, rock art and place names. Möller noted that the ground Temminck's pangolin had a wide distribution and occurred 221 222 all over southern Africa, and that the lack of early reports might be attributable to its nocturnal 223 habits.⁴ Skead³⁵ reported that a probable pangolin had been recorded in 1825 from the 224 Tarkastad or Queenstown area (in the current Eastern Cape Pprovince), and that this probably 225 constituted the southernmost record for the species (~32° S). Skead³⁵ quoted Layard³⁶ that the 226 pangolin was "not now" found in the Cape Colony (i.e., south of the Orange River), perhaps implying that it had occurred previously within it. Shortridge³⁷ reported that it was absent from 227 228 "Little Namagualand" but noted a pangolin skin from the Upington area and records south of the Orange River from Prieska and Colesberg. The 1865 type specimen is from Litakun (Latakou), 229 230 ~250 km north of the Orange River, and north of present-day Kuruman.³⁰ Lichtenstein³⁸ and 231 Burchell³⁹ also reported the occurrence of the pangolin in the Litakun area. 232

Möller provided two place names, letermagô and Khwaru, that refer to pangolins.⁴ Both are in
the Kruger National Park in South Africa's Limpopo Province, ~1,500 km northeast of the

Commented [A5]: According to the South African constitution the province name is "Western Cape". "Province" therefore doesn't form part of the pronoun, and as such shouldn't be capitalised.

Bosbokfontein site. They are therefore unhelpful regarding a potential southern Capedistribution range.

237

245

Rock art can provide information on prehistoric pangolin distribution, although it only implies the
artist's awareness that the species existed, not its occurrence in that precise locality. Despite
consultation with rock art experts, we are not aware of rock art depicting pangolins in southern
Africa other than a site in Limpopo Pprovince (Figure 4a), where a frieze of engraved animal
tracks of eight species contains an engraving of a possible pangolin hindfoot track.⁴⁰ 'Fragile
Images', a YouTube video, includes footage of the engraving at 12 minutes and 10 seconds:
https://www.youtube.com/watch?v=Ra12BKeH7Js-.

246 In summary, the body fossil record demonstrates the presence of pangolins in the southwestern 247 Cape region of South Africa during the Pliocene and Pleistocene. The situation is perhaps analogous to that of the giraffe (Giraffa camelopardalis), for which there is no body-fossil 248 evidence from the Pleistocene in the southwestern Cape, but a trace fossil record confirms its 249 presence.⁴¹ The giraffe tracksite lies under eightless than 8 km east of the Bosbokfontein 250 251 tracksite. The presence of giraffe tracks implies the presence of trees and a probable savanna 252 palaeoenvironment.⁴¹ This may have been suitable for Temminck'sthe ground pangolin, with a 253 preferred habitat of savanna woodland. The record from Nelson Bay Cave³⁴ lies just within the last glacial period, when aspects of this habitat might still have been present. Historical records, 254 255 place names and rock art do not contribute to an understanding of pangolin distribution in the 256 southwestern Cape.

257

258 Pangolin track morphology

259

Southern African neoichnologists are fortunate in having five tracking manuals to refer to.^{26,39,42-}
 ⁴⁴ Each describes <u>Temminck'sground</u> pangolin tracks, reviewed here in order of publication
 date. Figure 4b depicts the forefeet and hindfeet of a <u>Temminck'sground</u> pangolin.
 Liebenberg described five toes on the forefeet (the first with a small nail and the central three

with long, strongly curved claws), and five toes on the hindfeet, each with a short nail-like claw that is evident in the tracks.⁴² The body was noted to be balanced on the hindfeet when walking, with the forefeet and tail held off the ground. Tracks were noted to show the rounded pads of the hindfeet with four nails usually touching the ground. The occasional tail scrape and traces made by the front edges of the front claws were also noted. Hindfoot tracks were reported as 6
cm in length.⁴²
Van den Heever et al.²⁶ also noted that both forefeet and hindfeet have five toes, and that the
first and fifth toes of the front feet are reduced, leaving three middle toes with long curved claws,
well adapted for digging. The forefoot track (when present) was noted to record the upper
surfaces of the three middle claws, which curl under the foot. The hindfoot was described as
padded and triangular, with five toes, and ~5 cm in length. Movement was described as bipedal,

277 with the forefeet seldom touching the ground. Scuff marks made by dragging the tail were

278 279 reportedly occasionally present.26

Walker⁴³ described the pangolin as moving along on its hind legs, occasionally dropping onto all
fours or using the tail and forelegs for balance. Claws were noted to be prominent, and claws 2,
3 and 4 (presumably on the forefeet) were well-developed and recurved. Pangolins were noted
to walk mainly on their hind legs in an upright position. Hindfoot tracks were reportedly ~4.5 cm
long and wide.⁴³

285

Stuart and Stuart described (questionably in our opinion) a "typical tramline-like trail", resulting from the fairly wide spacing of the hindfeet, on which <u>Temminck'sthe ground</u> pangolin normally walks, with the short, heavily clawed forefeet held clear off the ground.⁴⁰ The forefeet were noted to be used mostly for digging. Hindfoot track length of 6 cm was reported, with slight intoeing. An image of a pangolin trackway was not provided.⁴⁰

291

Gutteridge and Liebenberg described the "interesting spoor" of the pangolin, which usually
moves bipedally on the rounded hindfeet.⁴⁴ These were noted to drag, as the pangolin walks in
a kind of shuffle. The unique marking made by the tail was also noted. Hindfoot track length was
reported as being 6.5 cm.⁴⁴

296

While there are slight differences in the focus of these descriptions, there is substantial
agreement, involving a predominantly bipedal gait, with hindfoot tracks 4.5–6.5 cm in size,
occasional forefoot traces, and occasional tail drag marks.

300

301 Interpretation and trackmaker identity

303 During the 2023 visit, the Master Trackers in our team (#D, /N) examined the surface unprimed 304 by any hypotheses on trackmaker identity. Once they presented their analysis, the rest of our team provided their own hypotheses and interpretations. The heuristic conclusion of the Master 305 306 Trackers was of a probable pangolin trackway. They inferred a bipedal gait with tracks "soos 'n 307 ronde stok wat in die grond ingedruk is" ("like a round stick poked into the ground") - for them 308 indicative of a pangolin trackmaker. Their reading of the external trackway width and pace length fortified their conclusion. For the rest of us, unfamiliar as we were with such tracks, the 309 310 proposal of a pangolin was a novelty. When photogrammetry images became available, we 311 jointly re-reviewed the lines of evidence.

312

313 Other plausible trackmaker candidates included felids such as serval (Leptailurus serval),

314 caracal (Caracal caracal) and African wild cat (Feli/s lybica), the viverrids African civet

315 (Civettictis civetta), rusty genet (Genetta maculata) and large-spotted genet (Genetta genetta),

and canids such as jackals and foxes (in a soft, sandy substrate the claw impressions of canids
might not be preserved). There is no evidence in the Pleistocene fossil record or among extant
southern African species of other animals that could have made these tracks. One caveat is that
carnivoran size (hence track size) varied during the Pleistocene, being reportedly larger during
glacial phases.⁴⁵

321

322 The tracks, 5-6 cm in size, are consistent with those of both extant Temminck's pangolin and 323 serval, although a pangolin's hindfoot track length is marginally greater than those of a serval's forefoot and hindfoot. Contra Stuart and Stuart⁴⁰, the narrow external trackway width is 324 325 consistent with the trackways of both Temminck's pangolin and, on occasion, serval. However, 326 the trackway widths of caracal⁴⁴ and especially civet (our own observations) are distinctly 327 broader. While the African wild cat can also produce a round track, the smaller size of its track 328 and pace length exclude it. Similar considerations exclude both species of genet. Jackal tracks, 329 in the 5 cm range, are relatively slender and more elongated (especially in the case of the smaller hind foot), definitely not "soos 'n ronde stok wat in die grond ingedruk is". The same is 330 331 true of fox tracks (Cape and Bat-eared), with the front foot of the Bat-eared fox (Octocyon 332 megalotis) measuring but 4.5 cm⁴⁴, and the hind foot even smaller, 333

Whereas <u>Temminck'sground</u> pangolin hindfoot tracks are triangular (with the apex pointing
 backwards, away from the direction of travel) and well-preserved serval tracks exhibit pad and
 digit impressions, none of these features might be present in Cape south coast aeolianites. This

337 may either be due to a soft, non-cohesive substrate at the time the tracks were registered, the 338 effects of grain size, or pre-burial or post-re-exposure erosion.¹ Consequently, the tracks of both 339 Temminck'sground pangolin and serval might appear round, without further morphological 340 details. In such a situation, trackmaker identity would depend more on trackway morphology 341 than of individual tracks. In the Bosbokfontein trackway, however, there is a hint of a triangular 342 track morphology, or at least of some tracks appearing wider distally. 343 344 The inference of trackmaker direction is based on some tracks appearing slightly wider in their 345 distal portions, the overall indentation pattern, and the orientation of the 'smudges'. These 346 impressions at the proximal-distal end of the trackway and in line with it are consistent with the 347 scuff-marks made by the pangolin tail (Figure 5a), and less consistent with tail traces made by 348 servals or other potential trackmakers. 349 350 Pace length is consistently 18-20 cm, and therefore the distance between tracks is about three

times the size of each track. While a pangolin sometimes walks with a shuffle and a relatively
short pace length (Figure 5b) it can also walk with a longer pace length, as in the Bosbokfontein
trackway and in Figure 6a.

354

360

Another potential distinguishing factor involves the relative lightness of the gait. A serval, like all cats, walks or runs lightly. A <u>Temminck'sground</u> pangolin, bulky, slower and bipedal, has a more ponderous gait. Therefore pangolin tracks tend to be deeper than serval tracks. While this is not an absolute criterion, the depth of the tracks in question (1.0_-1.5 cm), bolstered by the notion of the round end of a stick poked into the ground, suggests a pangolin trackmaker.

361 Opinions from expert southern African trackers were most helpful. We approached Opinions

362 from expert southern African trackers were most helpful. We approached [anonymised],

363 [anonymised], [anonymised], [anonymised], [anonymised], and [anonymised].

Their feedback was measuredly supportive. None thought the tracks were inconsistent with those of a pangolin. [anonymised] provided a confident assessment:

- 366
 "I agree with trackers that this is pangolin. Definitely not a cat, since the gait is not that of

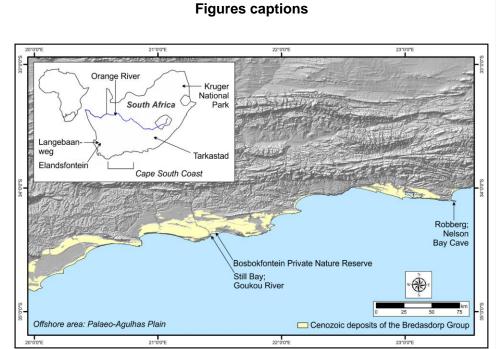
 367
 a four-legged animal, whose footprints would be in pairs (front and hind close together).
- 368 Pangolin is only bipedal gait with feet this shape and stride length."

Commented [A6]: Proximally?

Commented [A7]: Proximal? Pangolin tracks are wider in front than at the back.

[anonymised] cautioned that a serval's faded tracks could also appear very round and could 369 370 present with a narrow straddle, but, as we have indicated, the track depth tilts towards a 371 pangolin. 372 [anonymised] provided a detailed comment: 373 "To me, the tracks look like those of Temminck's pangolin, bipedalling along. The length 374 between prints would be determined by the animal's overall size. Young pangolins have a much smaller gap between their footprints. The largest adult pangolin I have dealt with 375 376 was 18.5 kgs, which nowadays is unusual to find. -I think that if it had moved, fast-paced, 377 through soft mud or sand, the length between prints would have been around 18-20 cm 378 or even a bit longer, and would be deeper than those of a young pangolin which would 379 weigh less." 380 381 In the less likely scenario that the tracks were registered by a serval, a 'direct register' would be inferred whereby the hindfoot was placed precisely on top of the forefoot track. (Stealth hunters 382 often employ this economical, sound-minimising foot-placement pattern.) From a prehistoric 383 distribution perspective, a serval trackmaker is plausible. Avery reported Pliocene serval records 384 385 from Gauteng Pprovince, and Pleistocene and Holocene records from, inter alia, the 386 southwestern Cape.31 387 388 Our overall conclusion is that the trackway cannot be attributed with absolute certainty to any trackmaker. However, it is most consistent with a Temminck'sground pangolin trackmaker, 389 390 distinctly more than a serval or any other candidate species. The Pleistocene distribution range 391 of Temminck'sthe ground pangolin included the southwestern Cape, in a situation that is 392 analogous to that of the giraffe, the preferred habitat of both species being savanna woodland. 393 Such habitat might have been present on the now-submerged Palaeo-Agulhas Plain.46 394 395 Conclusions 396 397 398 A Temminck'sground pangolin probably walked across a soft, sandy dune surface near the 399 margin of the Palaeo-Agulhas Plain, most likely during MIS 6 or MIS 5, leaving a trackway. Eight 400 tracks and, suggestively, two tail traces are preserved and amenable to interpretation. For 401 many, fossil trackways are to body fossils what movies are to photographs, and evocative

402	trackways tell a story of something that might have walked by yesterday, or over 100,000 years
403	ago.
404	
405	While the loose block containing the track-bearing surface is too large to physically recover, the
406	photogrammetry data can be used to make a replica of the trackway, which could be exhibited
407	in the Blombos Museum of Archaeology in Still Bay. What to date is probably the first reported
408	pangolin trackway in the world could thus serve to draw attention to the plight of pangolins
409	worldwide.
410	
411	In a recent publication we described the advantages of collaboration between indigenous
412	Master Trackers and western-trained ichnologists in interpreting Pleistocene trackways. ⁴⁷ The
413	title of a book by Liebenberg specified that the art of tracking was "the origin of science". ⁴⁸ In our
414	experience, the outcomes and conclusions that result are richer for integrating ancient and
415	modern science.
416	
417	
418	Acknowledgements
419	
420	We thank Linda Helm, Louis Liebenberg, Christina Mars, Richard McKibbin, Andrew Paterson,
421	Wendy Panaino, Renée and Niekie Rust, Chris and Mathilde Stuart, Alex Van den Heever, and
422	Richard Webb for their assistance.
423	
424	The data supporting the results of this study are available upon request to the corresponding
425	author.
426	
427	
428	References
429	
430	1. AUTHOR
431	
432	2. Gaudin T. Pholidota. In: Werdelin L, Sanders WJ, editors. Cenozoic Mammals of Africa.
433	Berkeley: University of California Press; 2010. p. 599–602.
434	


435	3.	Gu T-T, Wu H, Yang F, Gaubert P, Heighton SP, Fu Y, et al. Genomic analysis reveals a
436		cryptic pangolin species. Proc Natl Acad Sci USA. 2023;120(40):e2304096120.
437		https://doi.org/10.1073/pnas.2304096120
438		
439	4.	Möller LA. Of the Same Breath: Indigenous Animal and Place Names. Sun Media
440		Bloemfontein (Pty) Ltd.: Bloemfontein; 2017. https://doi.org/10.18820/9781928424031
441		
442	5.	IUCN Red List of Threatened Species. 2023.
443		https://www.iucnredlist.org/search?query=Pangolins&searchType=species
444		
445	6.	D'Cruze N, Assou D, Coulthard E, Norrey J, Megson D, Macdonald DW, et al. Snake oil
446		and pangolin scales: insights into wild animal use at "Marché des Fétiches" traditional
447		medicine market, Togo. Nat Conserv. 2020;39:45-71.
448		https://doi.org/10.3897/natureconservation.39.47879
449		
450	7.	Ingram DJ. 400,000 African pangolins are hunted for meat every year – why it's time to
451		act. The Conversation Africa 2019. https://theconversation.com/400-000-african-
452		pangolins-are-hunted-for-meat-every-year-why-its-time-to-act-111540
453	0	Malan IA Lithastratigraphy of the Washuiskrans Formation (Productor Crown)
454	о.	Malan JA. Lithostratigraphy of the Waenhuiskrans Formation (Bredasdorp Group) –
455		South African Committee for Stratigraphy Lithostratigraphic Series 8. Pretoria:
456		Department of Mineral and Energy Affairs;1989.
457	0	Malan 14, 4000. The stratigraphy and addimentals my of the Dradesdare Crays
458	9.	Malan JA. 1990. The stratigraphy and sedimentology of the Bredasdorp Group,
459		Southern Cape Province, South Africa. MSc thesis. Cape Town: University of Cape
460		Town; 1990.
461 462	10	Roberts DL, Cawthra HC, Musekiwa C. Dynamics of late Cenozoic aeolian deposition
463	-	along the South African coast: a record of evolving climate and ecosystems. In: Martini
464		IP, Wanless HR, editors. Sedimentary Coastal Zones from High to Low Latitudes:
465		Similarities and Differences. Special Publication of the Geological Society of London
466		2013:388. p. 353–387 http://dx.doi.org/10.1144/SP388.11
467		
468	11	Brooke B. The distribution of carbonate eolianite. Earth-Sci Rev. 2001:55;135–164.
469		https://doi.org/10.1016/S0012-8252(01)00054-X

470	
471	12. Marean CW, Cowling RC, Franklin J. The Palaeo-Agulhas Plain: temporal and spatial
472	variation in an extraordinary extinct ecosystem of the Pleistocene of the Cape Floristic
473	Region. In: Cleghorn N, Potts AJ, Cawthra HC, editors. The Palaeo-Agulhas Plain: A
474	Lost World and Extinct Ecosystem. Quat Sci Rev. 2020;235:106161.
475	https://doi.org/10.1016/j.quascirev.2019.106161
476	
477	13. Carr AS, Bateman MD, Roberts DL, Murray-Wallace CV, Jacobs Z, Holmes PJ. The last
478	interglacial sea-level high stand on the southern Cape coastline of South Africa. Quat
479	Res. 2010;73:351–363. https://doi.org/10.1016/j.yqres.2009.08.006
480	44 Deherte DL Deterrer MD Murrey Wellace CV/ Cerr AC Helmes DL Lest Internisiel
481	14. Roberts DL, Bateman MD, Murray-Wallace CV, Carr AS, Holmes PJ. Last Interglacial
482	fossil elephant trackways dated by OSL/AAR in coastal aeolianites, Still Bay, South
483	Africa. Palaeogeogr Palaeoclimatol Palaeoecol. 2008;257(3):261–279.
484	https://doi.org/10.1016/j.palaeo.2007.08.005
485	
486	15. Bateman MD, Carr AS, Dunajko AC, Holmes PJ, Roberts DL, McIaren SJ, et al. The
487	evolution of coastal barrier systems: a case study of the Middle-Late Pleistocene
488	Wilderness barriers, South Africa. Quat Sci Rev. 2011;30:63–81.
489	https://doi.org/10.1016/j.quascirev.2010.10.003
490	40. Ocurther U.O. Jacoba Z. Ocurator, 10. Eicher EO. Karlunger, D.M. Bergeritieret
491	16. Cawthra HC, Jacobs Z, Compton JS, Fisher EC, Karkanas P, Marean CW. Depositional
492	and sea-level history from MIS 6 (Termination II) to MIS 3 on the southern continental
493	shelf of South Africa. Quat Sci Rev. 2018;181:156–172.
494	https://doi.org/10.1016/j.quascirev.2017.12.002
495	
496	17. Roberts DL, Karkanas P, Jacobs Z, Marean CW, Roberts RG. Melting ice sheets
497	400,000 yr ago raised sea level by 13 m: past analogue for future trends. Earth Planet
498	Sci Lett. 2012;357–358:226–237. https://doi.org/10.1016/j.epsl.2012.09.006
499	40. Carr AC. Detemory MD. Courther LIC. Cooky I. First suidenes for each second states in the
500	18. Carr AS, Bateman MD, Cawthra HC, Sealy J. First evidence for onshore marine isotope
501	stage 3 aeolianite formation on the southern Cape coastline of South Africa. Mar Geol.
502	2019;407:1–15. <u>https://doi.org/10.1016/j.margeo.2018.10.003</u>
503	

504	19. Roberts D, Cole K. Vertebrate trackways in Late Cenozoic coastal eolianites, South
505	Africa. Geological Society of America Abstracts with Programs, XVI INQUA Congress.
506	2003:70(3);196.
507	
508	20. Belvedere M, Farlow JO. A numerical scale for quantifying the quality of preservation of
509	vertebrate tracks. In: Falkingham PL, Marty D, Richter A, editors. Dinosaur tracks: the
510	next steps. Bloomington and Indianapolis: Indiana University Press; 2016. p. 92–99.
511	
512	21. Falkingham PL, Gatesy SM. Discussion: defining the morphological quality of fossil
513	footprints. Problems and principles of preservation in tetrapod ichnology with examples
514	from the Palaeozoic to the present by Lorenzo Marchetti et al. Earth-Sci Rev.
515	2020;208:103320. https://doi.org/10.1016/j. earscirev.2020.103320
516	
517	22. Gatesy SM, Falkingham PL. Neither bones nor feet: track morphological variation and
518	'preservation quality'. J. Vertebr. Paleontol. 2017;37:e1314298.
519	https://doi.org/10.1080/0 2724634.2017.1314298
520	
521	23. AUTHOR ET AL.
522	
523	24. AUTHOR ET AL.
524	
525	25. AUTHOR ET AL.
526	
527	26. Van den Heever A, Mhlongo R, Benadie K. Tracker Manual – a Practical Guide to Animal
528	Tracking in Southern Africa. Struik Nature: Cape Town; 2017.
529 530	27. Matthews NA, Noble TA, Breithaupt BH. Close-range photogrammetry for 3-D ichnology:
531	the basics of photogrammetric ichnology. In: Falkingham PL, Marty D, Richter A, editors.
532	Dinosaur Tracks: The Next Steps. Bloomington: Indiana University Press; 2016. p. 28–
533	55.
534	
535	28. Falkingham PL, Bates KT, Avanzini M, Bennett M, Bordy EM, Breithaupt BH, et al. 2018.
536	A standard protocol for documenting modern and fossil ichnological data. Palaeontology,
537	2018;61(4):469-480. https://doi.org/10.1111/pala.12373
538	

539	29. Botha J, Gaudin T. An Early Pliocene pangolin (Mammalia; Pholidota) from
540	Langebaanweg, South Africa. J Vertebr Paleontol. 2007;27:484–491.
541	
542	30. Gaudin TJ, Emry RJ, Wible JR. The phylogeny of living and extinct pangolins
543	(Mammalia, Pholidota) and associated taxa: a morphology based analysis. J-Mammal.
544	2009;16:235–305.
545	
546	31. Avery DM. A Fossil History of Southern African Land Mammals. Cambridge University
547	Press: Cambridge; 2019. <u>https://doi.org/10.1017/9781108647243</u>
548 549	32. Hendey QB. Palaeoecology of the Late Tertiary fossil occurrences in 'E' Quarry,
550	Langebaanweg, South Africa, and a reinterpretation of their geological context. Ann S Afr
551	Mus. $1981;84(1):1-104$.
552	
553	33. Klein RG, Avery G, Cruz-Uribe K, Steele TE. The mammalian fauna associated with an
554	archaic hominin skullcap and later Acheulean artifacts at Elandsfontein, Western Cape
555	Province, South Africa. J Hum Evol. 2007;52:164–186.
556	https://doi.org/10.1016/j.jhevol.2006.08.006
557	
558	34. Klein RG. The Late Quaternary mammalian fauna of Nelson Bay Cave (Cape Province,
559	South Africa): its implications for megafaunal extinctions and environmental and cultural
560	change. Quat Res. 1972;2:135–142.
561	
562	35. Skead CJ. Historical Mammal incidence in the Cape Province Vol. I. Western Cape and
563	Northern Cape. Vol. II. Eastern Cape, Ciskei and Transkei. Chief Directorate, Nature and
564	Environmental Conservation of the Provincial Administration of the Cape of Good Hope:
565	Cape Town; 1987.
566 567	36. Layard EL. Catalogue of the specimens in the collection of the South African Museum.
568	Part 1. The Mammalia. Saul Solomon and Co.: Cape Town; 1861.
569 570	37. Shortridge GC. Field notes on the first and second expeditions of the Cape Museum's
571	mammal survey of the Cape Province; and descriptions of some new subgenera and
572	subspecies. Ann S Afr Mus. 1942;36:27–99.
573	
574	38. Lichtenstein WHC. Travels in Southern Africa, in the years 1803, 1804, 1805 and 1806.
575	Vol. 2 (Translation by Anne Plumtre). Van Riebeeck Society No. 11: Cape Town; 1815.

576 577	39. Burchell WJ. Travels in the Interior of Southern Africa. Vol. 2. Longman, Hurst, Rees,
578	Orme, Brown, and Green: London; 1824.
579 580	40. Stuart C, Stuart T. 2019. A Field Guide to the Tracks and Signs of Southern and East
581	African Wildlife. Struik Nature: Cape Town; 2019.
582 583	41. AUTHOR ET AL.
584 585	42. Liebenberg L. 2000. A Photographic Guide to Tracks and Tracking in Southern Africa.
586	Struik Publishers: Cape Town; 2000.
587 588	43. Walker C. Signs of the Wild – A Field Guide to the Spoor & Signs of the Mammals of
589	Southern Africa. Struik Nature: Cape Town; 2018.
590 591	44. Gutteridge L, Liebenberg L. Mammals of Southern Africa and their Tracks and Signs.
592	Jacana Media (Pty) Limited: Auckland Park; 2021.
593 594	45. Klein RG. Carnivore size and Quaternary climatic change in Southern Africa. Quat Res.
595	1986;26:153–170.
596 597	46. Cowling RM, Potts AJ, Franklin J, Midgley GF, Engelbrecht F, Marean CW. Describing a
598	drowned Pleistocene ecosystem: Last Glacial Maximum vegetation reconstruction of the
599	Palaeo-Agulhas Plain. In: Cleghorn, N., Potts, A.J., Cawthra, H.C. (Eds.), The Palaeo-
600	Agulhas Plain: A Lost World and Extinct Ecosystem. Quat Sci Rev. 2020;235;105866.
601	https://doi.org/10.1016/j.quascirev.2019.105866
602 603	47. AUTHOR ET AL.
604 605	49 Lichenhorg L. The Art of Treaking the Origin of Spience, David Dhillin: Classroot
605 606	48. Liebenberg L. The Art of Tracking – the Origin of Science. David Phillip: Claremont, South Africa: 1990
606	South Africa; 1990.

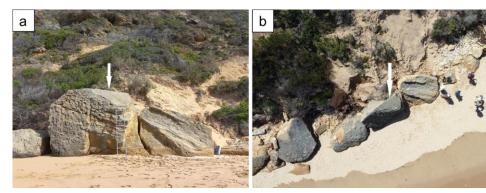

607 608

Figure 1: Map of South Africa's coast, indicating the Bosbokfontein site, the extent of Pleistocene

611 deposits, and sites mentioned in the text.

612

613

- Figure 2: (a) The large loose block containing the purported pangolin trackway on its upper surface; the
 ladder length is 410 cm. (b) The track-bearing block, viewed from above using a drone; adult human
- 616 figures for scale. Arrows point to the track-bearing surface.

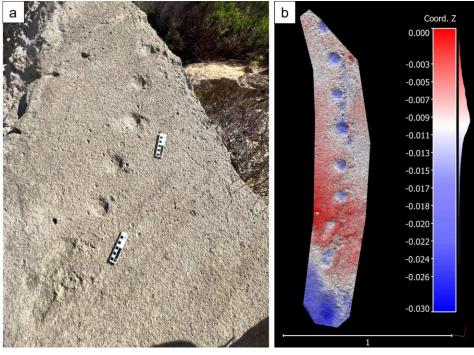
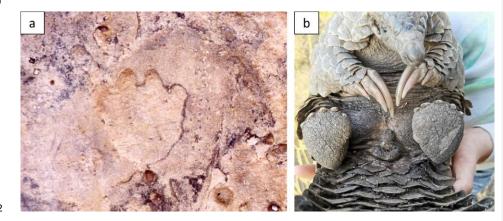
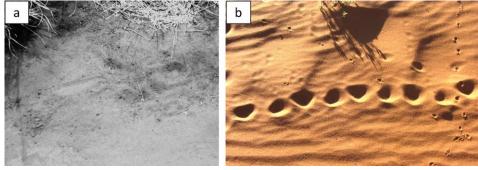




Figure 3: (a) The purported pangolin trackway; scale bars = 10 cm. (b) Photogrammetry colour mesh of the trackway; vertical and horizontal scales are in metresmeters.

- **Figure 4:** (a) <u>A-rR</u>ock engraving of a probable pangolin track in Limpopo <u>Pp</u>rovince, <u>South Africa;</u>
- reproduced with permission from Chris and Mathilde Stuart. (b) The forefeet and hindfeet of a ground
- 25 <u>Temminck's pangolin, viewed from below; reproduced with permission from [anonymised].</u>
- 625 626

- 627 628
- Figure 5: (a) Scuff marks registered by the tail of a ground-Temminck's pangolin; reproduced with
- permission from Bruno Nebe. (b) <u>AtTrackway of a Temminck'sground</u> pangolin, showing (in this case) a
 short pace length; reproduced with permission from [anonymised].
- 631

- **Figure 6:** A <u>Temminck'sground</u> pangolin walking with a longer pace length; reproduced with permission
- 634 from [anonymised].

1	A PROBABLE PLEISTOCENE PANGOLIN TRACKWAY FROM SOUTH	
2	AFRICA'S CAPE SOUTH COAST	Commented [A1]: Authors?
3		
4	Abstract	
5		
6	A fossil trackway, attributed to a probable pangolin trackmaker, has been identified on a	
7	Pleistocene aeolianite surface of the Waenhuiskrans Formation in the Bosbokfontein Private	
8	Nature Reserve on South Africa's Cape south coast. The trackway comprises eight tracks and	
9	two probable tail traces. This appears to be the first description of a pangolin trackway in the	
10	global fossil record. The trackway was probably registered during Marine Isotope Stage 6 or 5.	
11	Trackway assessment and interpretation involved the integration of indigenous African and	
12	western-based ichnological approaches, leading to a reasonably confident conclusion on	
13	probable trackmaker identity. Alternative trackmakers (felids, viverrids and canids) were	
14	considered, but excluded or regarded as less likely candidates. There are three Cenozoic body	
15	fossil records of pangolins from the southwestern Cape. Only the ground pangolin currently	
16	occurs in southern Africa. All pangolin species are threatened or endangered.	
17		
18	Significance of the main findings	
19		
20	- A Pleistocene probable pangolin trackway has been identified east of Still Bay.	
21	- The identification involved integrating indigenous African and western-based ichnological	
22	approaches.	
23	- This appears to be the first known fossilised pangolin trackway.	
24	- The trackway comprises eight tracks and two probable tail traces.	
25	- This discovery could draw attention to the plight of pangolins.	
26		
27	KEYWORDS: pangolin, fossil tracks, aeolianites, Cape south coast, Pleistocene	
28	Figures inserted at the bottom of document.	
29		

Introduction

30

63

31		
32	Through the Cape south coast ichnology project over 350 Pleistocene vertebrate ichnosites	
33	have been documented along a 350 km stretch of South African coastline. The majority (80%)	
34	represent mammal tracks and traces. ¹ Until now, no pangolin ichnofossils have been identified,	
35	either on the Cape south coast or, to the best of our knowledge, anywhere in the world. Here we	
36	describe a trackway on an aeolianite (cemented dune) palaeosurface in the Bosbokfontein	Comn
37	Nature Reserve, east of Still Bay on the Cape south coast. The lines of evidence converge on a	
38	pangolin as the probable trackmaker.	
39		
40	The order Phiolidota contains a single family, Manidae, with eight established, extant pangolin	
41	species from sub-Saharan Africa, India, southern China and southeast Asia to the Philippines. ²	
42	A cryptic ninth Asian species was added in 2023.3 Four of these species occur in Africa - two	
43	are arboreal, and two (the ground pangolin and the giant pangolin) are ground-dwelling. The	
44	ground pangolin (<i>Manis temminckii</i> or <i>Smutsia temminckii</i>) is also known as Temminck's	
45	pangolin, the Cape pangolin, or the scaly anteater, and is the only pangolin species to currently	
46	occur in southern Africa.² In the Ju/'hoan language the ground pangolin is known as 'n‡hòqò',	
47	and in Afrikaans as the 'ietermagog'. The latter is probably of Bantu or Tswana derivation. ⁴	
48		
49	All species of extant pangolin are threatened by poaching and habitat loss, and all are classified	
50	as vulnerable, endangered, or critically endangered. ⁵ Pangolin meat is regarded as a delicacy,	
51	and pangolin scales are used in traditional medicines. ⁶ There is evidence that pangolins are	
52	among the most trafficked wild animals on Earth, and 400,000 African pangolins are estimated	
53	to be hunted for their meat annually. ⁷	
54		
55	The tracks described here were initially identified in 2018 by Renée Rust and family. The tracks	
56	are evident on the surface of a large fallen aeolianite block. The putative trackmaker remained	
57	enigmatic until our joint analysis in 2023. Two of us (anonymised) are indigenous Ju'/hoansi	
58	San Master Trackers, and had an immediate, strong sense of what was being examined. This	
59	presented the opportunity for indigenous and modern scientific tracking exponents to engage in	
60	a productive exchange of ideas, combining culturally honed and experientially grounded	
61	intuitions with modern assessment techniques. This collaborative, inter-disciplinary approach	
62	has allowed us to arrive at a shared conclusion on probable trackmaker identity.	

Commented [A2]: I would omit this here

64	The purpose of this article is to describe the trackway, discuss the probable trackmaker,		
65	consider alternative trackmakers, and discuss the relevance of this discovery. We also reflect on		
66	the value of integrating indigenous African and western-based ichnological approaches.		
67			
68			
69	Geological context		
70			
71	Pleistocene carbonate aeolianites (comented dunes) of the Waenhuiskrans Formation ⁸ , part of		
72	the Neogene Bredasdorp Group ⁹ , are exposed along portions of the Cape south coast of South		
73	Africa, and have provided evidence for palaeo-shorelines and palaeo-coastal dune activity. ¹⁰		
74	Carbonate aeolianites are consolidated coastal rock formation consisting of at least partially		
75	lithified calcareous wind-blown sand. Globally, aeolianites are fairly common in mid-latitude		Co
76	coastal regions between 20° and 40°.11 Aeolianite surfaces preserve a record of the passage of		soi du
77	trackmakers when they comprised unconsolidated sand. Throughout the Pleistocene, global		(uu
78	sea-level change meant that the Cape south coast landscape was dynamic. Vertebrate		
79	ichnosites encountered on these palaeosurfaces would have been situated at the margin of the		
80	Paleo-Agulhas Plain, most of which is presently submerged, but at times sea-level oscillations		
81	would have exposed the entire Plain. ¹² In contrast, sea level was 6–8 metres higher than at		Co
82	present at the height of the Marine Isotope Stage (MIS) 5e marine transgression at ~126 ka. $^{\rm 13}$		
83			
84	Optically Stimulated Luminescence (OSL) dating of onshore aeolianites has shown that most		
85	date to MIS 5 and late MIS 6.13-16 MIS 11 deposits17 and MIS 3 deposits18 have also been		
86	identified, with a resulting age range of dated deposits presently spanning ~400-35 ka. Roberts		
87	and Cole provided an explanation for the profusion of ichnosites, postulating a combination of a		
88	cohesive moulding agent (moist sand), rapid track burial (facilitated by high sedimentation		
89	rates), rapid lithification (via partial solution and re-precipitation of bioclasts), and finally re-		
90	exposure of track-bearing surfaces through shoreline erosion. ¹⁹		Co
91		/	sul
92	In general, the grain size of the substrate inversely influences the preservation quality of fossil		foc Co
93	tracks. In Cape south coast Pleistocene deposits, tracks made on moderately coarse-grained	//	Ma
94	dune surfaces tend to show poor to intermediate preservation quality, certainly inferior to that	//	Ca S.,
95	seen elsewhere in the world, particularly clay or mud substrates on cave floors. Belvedere and	/	mc

96 Farlow introduced a four-point preservation scale, in which 0 represents an unidentifiable track,

Commented [A3]: I suggest adding this sentence or something similar that is more specific that "cemented dune"

Commented [A4]: Lower case

Commented [A5]: Why only in cave floors? Fine grained substrates exposed aerially can also produce high quality footprints

Commented [A6]: Refined by Marchetti et al. 2019 Marchetti, L., Belvedere, M., Voigt, S., Klein, H., Castanera, D., Díaz-Martínez, I., Marty, D., Xing, L., Feola, S., Melchor, R.N., Farlow, J.O., 2019. Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present. Earth-Science Reviews 193, 109–145. 10.1016/j.earscirev.2019.04.008

97	and 3 represents a track of exceptional quality. ²⁰ It is unusual for tracks within the Cape south	
98	coast deposits to rise above 2 on this scale.	
99		
100	Active shoreline erosion causes coastal cliffs to fragment or collapse, sometimes exposing new	
101	ichnosites, while known sites deteriorate in quality or loose blocks slump into the ocean.	
102	Ichnosites are thus ephemeral. The taphonomic erosive effects of wind and water, either pre-	
103	burial or post re-exposure, can result in loss of track preservation quality. In the latter case, even	
104	if the tracks displayed anatomical fidelity at the time of re-exposure, over time their quality can	
105	deteriorate.1 The causes of relatively poor preservation (moderately large grain size, pre-burial	Comm
106	erosion and post-exposure erosion) may be difficult to distinguish, especially if it is not known	range?
107	for how long the surface has been exposed. ^{21,22}	
108		
109	The Bosbokfontein tracksite is located in a remote section of coastline (Figure 1), characterised	
110	by aeolianite cliffs as high as 30 m. High tides and storm surges cause cliff sections to collapse,	
111	whereupon loose blocks come to rest on unstable slopes or near the high-tide mark at the cliff	
112	base.	
113		
114	One section in this region, situated ~8 km east of the Bosbokfontein site, had been dated prior	
115	to our studies. ¹³ Ages obtained through OSL dating produced a range of 140 \pm 8 ka to 91 \pm 5	
116	ka. Our subsequent work has yielded several results of relevance here (in each case a five-digit	
117	number is preceded by "Leic"). The closest of these lies 4.5 km east of the Bosbokfontein site,	
118	where an age of 126 \pm 9 ka was obtained (Leic21005). ²³ Other results from sites located slightly	
119	further east include 161 \pm 12 ka (Leic20033), 139 \pm 10 ka (Leic20031), 134 \pm 9 ka (Leic21008),	
120	and 109 ± 9 ka (Leic20024). ²³⁻²⁵ It therefore seems likely that the Bosbokfontein track-bearing	Comm
121	surface occurs in deposits within the age range of ~161–91 ka, from MIS 6 or MIS 5.	stratigi sample
122		transg
123		
124	Methods	
125		
126	Track measurements (in cm) included length, width, depth, pace length, and stride length.	
127	External trackway width was measured in cm, representing "the distance between the footfall of	Comm
128	left and right feet, measured between the outside extremities of the tracks". ²⁶ Global Positioning	
129	System locality readings were taken using a hand-held Garmin 60 device. Locality data were	

nented [A7]: Can you give an idea of the size ? For example, medium to coarse grained sand?

nented [A8]: Can you explain what is the graphic relationship of the sites where these es were obtained. Are they part of the same ressive dune system?

nented [A9]: repeated

130	stored with the African Centre for Coastal Palaeoscience at Nelson Mandela University, to be
131	made available to researchers upon request.
132	
133	The tracksite was photographed, and photogrammetric analysis performed. ^{27,28} 3D models were
134	generated with Agisoft MetaShape Professional (v. 1.0.4) using an Olympus TG-5 camera (focal
135	length 4.5 mm; resolution 4000 x 3000; pixel size 1.56 x 1.56 um). The final images were
136	rendered using CloudCompare (v.2.10-beta). The tracks could be assessed by climbing to the
137	top of the block and examining the surface, but for optimal recording, including photogrammetry
138	studies, access via a portable ladder proved useful. A DJI Mini 2 drone with an inbuilt DJI
139	camera/video was used to obtain further photographs.
140	
141	Having viewed the tracksite in detail together, and examined photographs and photogrammetry
142	models, we reviewed our findings and opinions. This permitted further integration of the
143	perspectives and interpretations of Master Trackers and western-trained ichnologists.
144	Furthermore, we engaged with some of southern Africa's tracking (neoichnology) experts,
145	asking for their opinions on trackmaker identity based on photographic and photogrammetric
146	images.
147	
148	
149	Results
150	
151	The tracksite is located within the Bosbokfontein Private Nature Reserve, approximately 6.5 km
152	
	east of the mouth of the Goukou River and the community of Still Bay. It occurs on the upper
153	
153 154	east of the mouth of the Goukou River and the community of Still Bay. It occurs on the upper
	east of the mouth of the Goukou River and the community of Still Bay. It occurs on the upper surface of a large <i>ex situ</i> block, which has tumbled down the vegetated slopes from cliffs above
154	east of the mouth of the Goukou River and the community of Still Bay. It occurs on the upper surface of a large <i>ex situ</i> block, which has tumbled down the vegetated slopes from cliffs above and come to rest above the high-tide mark (Figure 2). The maximum length of the block is ~7 m,
154 155	east of the mouth of the Goukou River and the community of Still Bay. It occurs on the upper surface of a large <i>ex situ</i> block, which has tumbled down the vegetated slopes from cliffs above and come to rest above the high-tide mark (Figure 2). The maximum length of the block is ~7 m, with a maximum thickness of 4.5 m. However, the approximately triangular-shaped track-
154 155 156	east of the mouth of the Goukou River and the community of Still Bay. It occurs on the upper surface of a large <i>ex situ</i> block, which has tumbled down the vegetated slopes from cliffs above and come to rest above the high-tide mark (Figure 2). The maximum length of the block is ~7 m, with a maximum thickness of 4.5 m. However, the approximately triangular-shaped track-bearing surface is smaller, with maximum dimensions of ~200 x 180 cm. Slight deterioration in
154 155 156 157	east of the mouth of the Goukou River and the community of Still Bay. It occurs on the upper surface of a large <i>ex situ</i> block, which has tumbled down the vegetated slopes from cliffs above and come to rest above the high-tide mark (Figure 2). The maximum length of the block is ~7 m, with a maximum thickness of 4.5 m. However, the approximately triangular-shaped track-bearing surface is smaller, with maximum dimensions of ~200 x 180 cm. Slight deterioration in the preservation quality of the tracks and trackway occurred since identification in 2018, but
154 155 156 157 158	east of the mouth of the Goukou River and the community of Still Bay. It occurs on the upper surface of a large <i>ex situ</i> block, which has tumbled down the vegetated slopes from cliffs above and come to rest above the high-tide mark (Figure 2). The maximum length of the block is ~7 m, with a maximum thickness of 4.5 m. However, the approximately triangular-shaped track-bearing surface is smaller, with maximum dimensions of ~200 x 180 cm. Slight deterioration in the preservation quality of the tracks and trackway occurred since identification in 2018, but
154 155 156 157 158 159	east of the mouth of the Goukou River and the community of Still Bay. It occurs on the upper surface of a large <i>ex situ</i> block, which has tumbled down the vegetated slopes from cliffs above and come to rest above the high-tide mark (Figure 2). The maximum length of the block is ~7 m, with a maximum thickness of 4.5 m. However, the approximately triangular-shaped track-bearing surface is smaller, with maximum dimensions of ~200 x 180 cm. Slight deterioration in the preservation quality of the tracks and trackway occurred since identification in 2018, but assessment and interpretation of tracks and trackway morphology remained feasible.

163 subject to change following storm surges. Viewed in cross section, the block exhibits laminar

165	direction is inferred to be upslope with respect to the current orientation, and the trackway is	
166	interpreted here with the viewer facing landwards and northwest, i.e., as if the trackmaker was	
167	progressing upslope. The tracks are preserved in convex epirelief.	
168		
169	Eight tracks are evident (Figure 3), but the distal track occurs at the edge of the surface and is	
170	partial, and the two proximal tracks are partially obscured by two longitudinal 'smudges', aligned	
171	in approximately the same direction as the trackway. These are approximately 10.0–12.5 cm	
172	long and 4.5–6.0 cm wide. Tracks 3 through 7 therefore offer the best potential for analysis. The	$\langle $
173	trackway curves gently to the left, such that its distal end is orientated ~30° leftward of that of its	
174	proximal end. Faint displacement rims partially encircle some of the tracks, suggesting that the	$ \rangle$
175	tracks were registered on a slightly sloping surface.	
176		114
177	Track lengths (5.5–6.0 cm) and track widths (5.0-5.5 cm) are relatively constant. Tracks 6 and 7	
178	appear slightly wider in their distal portions. Pace length in tracks 3 through 7 is relatively	
179	constant (18–20 cm). Track depth varies from 1.0 to 1.5 cm, with the distal portions of the tracks	
180	slightly deeper than the proximal portions. The external trackway width appears narrow,	
181	approximately 7.5 cm.	
182		Í
183		Ĺ
184	Discussion	
185		
186	The prehistoric and historic distribution of southern African	
187	pangolins	
188		
189	The global record of pangolins extends back to the Oligocene Epoch ²⁹ , as reviewed by Gaudin	
190	et al. ³⁰ The prehistoric distribution of pangolins in southern Africa in the palaeontological record	
191	is meagre for the southern Cape and western Cape: there are only three reported Cenozoic	
192	fossils of pangolins from these regions. ³¹ These all represent skeletal evidence, and we are not	
193	aware of trace fossil records of pangolins in the global ichnology record. The three reported	
194	southwestern Cape fossil records are now summarised.	
195		

bedding, mostly parallel but with slight distortion in places and faint cross-bedding. Trackmaker

164

Commented [A10]: This sedimentologic description is not acceptable since a detailed evaluation of the sedimentary structures should be included. How do you know that the interval containing the footprints is crossbedded? I suggest including an illustration depicting the sedimentary structures of the block. What is the objective evidence that the trackmaker travelled upslope? This should be discussed. I can see a marginal ridge that is lateral to the prints thus suggesting progression on an inclined surface but parallel to strike direction. Dune systems can contain also low angle bedding that belongs to interdunes.

Commented [A11]: After the illustrations it is concave epirelief, unless you changed the scale of the elevation model.

Commented [A12]: Please, use a descriptive an objective term and indicate this on the figures. You are referring to elongated depressions, isn't it?

Commented [A13]: Please, add numbers to Fig. 3b

Commented [A14]: I think that they are lateral.

Commented [A15]: Please, describe the shape of the tracks

Commented [A16]: You mean anterior? How do you established the sense of movement?

Hendey reported an unstudied early Pliocene pangolin from the 'E' Quarry at Langebaanweg in 196 the Western Cape Province near the South African west coast.³² Botha and Gaudin²⁹ formally 197 described this specimen as probably ground dwelling, and possibly having engaged in a 198 199 quadrupedal gait similar to that of the extant giant pangolin (Manis gigantea). It was suggested 200 that it may have used its forelimbs more than *M. temminckii*. The specimen was assigned to *M.* 201 gigantea, making it the oldest known representative of that species.29 202 203 Klein et al. described a pangolin assigned to the genus Phataginus from the Elandsfontein Main 204 site in the Western Cape Province on South Africa's west coast, ~350 km WNW of the tracksite 205 reported on here.33 It was described as an "extralimitary species" that contributed to the 206 exceptional faunal diversity of the site. The age of the faunal assemblage was estimated to be in the range of 1.0-0.6 Ma.33 207 208 209 The closest pangolin body fossil site to the Bosbokfontein site, temporally and spatially, was reported by Klein from Nelson Bay Cave near Robberg, 180 km east of Bosbokfontein.³⁴ It was 210 located in Late Pleistocene deposits dating to 18-16 ka. It was described as the "Cape 211 212 pangolin, Manis cf. temmincki".34 213 214 The southern African Holocene and historic record is more extensive for the ground pangolin. 215 Possible sources include historical accounts, ethnographic records, rock art and place names. 216 Möller noted that the ground pangolin had a wide distribution and occurred all over southern Africa, and that the lack of early reports might be attributable to its nocturnal habits.⁴ Skead³⁵ 217 218 reported that a probable pangolin had been recorded in 1825 from the Tarkastad or 219 Queenstown area (in the current Eastern Cape Province), and that this probably constituted the 220 southernmost record for the species (~32²⁰ S). Skead³⁵ quoted Layard³⁶ that the pangolin was 221 "not now" found in the Cape Colony (i.e., south of the Orange River), perhaps implying that it had occurred previously within it. Shortridge37 reported that it was absent from "Little 222 223 Namagualand" but noted a pangolin skin from the Upington area and records south of the Orange River from Prieska and Colesberg. The 1865 type specimen is from Litakun (Latakou), 224 225 ~250 km north of the Orange River, and north of present-day Kuruman.³⁰ Lichtenstein³⁸ and 226 Burchell³⁹ also reported the occurrence of the pangolin in the Litakun area. 227 228 Möller provided two place names, letermagô and Khwaru, that refer to pangolins.⁴ Both are in 229 the Kruger National Park in South Africa's Limpopo Province, ~1,500 km northeast of the

Commented [A17]: Please indicate, the type of?

Bosbokfontein site. They are therefore unhelpful regarding a potential southern Capedistribution range.

232

Rock art can provide information on prehistoric pangolin distribution, although it only implies the artist's awareness that the species existed, not its occurrence in that precise locality. Despite consultation with rock art experts, we are not aware of rock art depicting pangolins in southern Africa other than a site in Limpopo Province (Figure 4a), where a frieze of engraved animal tracks of eight species contains an engraving of a possible pangolin hindfoot track.⁴⁰ 'Fragile Images', a YouTube video, includes footage of the engraving at 12 minutes and 10 seconds: <u>https://www.youtube.com/watch?v=Ra12BKeH7Js</u>.

240

241 In summary, the body fossil record demonstrates the presence of pangolins in the southwestern

242 Cape region of South Africa during the Pliocene and Pleistocene. The situation is perhaps

analogous to that of the giraffe (*Giraffa camelopardalis*), for which there is no body-fossil

evidence from the Pleistocene in the southwestern Cape, but a trace fossil record confirms its

245 presence.⁴¹ The giraffe tracksite lies under eight km east of the Bosbokfontein tracksite. The

246 presence of giraffe tracks implies the presence of trees and a probable savanna

palaeoenvironment.⁴¹ This may have been suitable for the ground pangolin, with a preferred

habitat of savanna woodland. The record from Nelson Bay Cave³⁴ lies just within the last glacial

period, when aspects of this habitat might still have been present. Historical records, placenames and rock art do not contribute to an understanding of pangolin distribution in the

southwestern Cape.

252

253 Pangolin track morphology

254

Southern African neoichnologists are fortunate in having five tracking manuals to refer to.^{26,39,42-}
 ⁴⁴ Each describes ground pangolin tracks, reviewed here in order of publication date. Figure 4b
 depicts the forefeet and hindfeet of a ground pangolin.

258

Liebenberg described five toes on the forefeet (the first with a small nail and the central three with long, strongly curved claws), and five toes on the hindfeet, each with a short nail-like claw that is evident in the tracks.⁴² The body was noted to be balanced on the hindfeet when walking, with the forefeet and tail held off the ground. Tracks were noted to show the rounded pads of

the hindfeet with four nails usually touching the ground. The occasional tail scrape and traces

made by the front edges of the front claws were also noted. Hindfoot tracks were reported as 6 264 265 cm in length.42 266 267 Van den Heever et al.²⁶ also noted that both forefeet and hindfeet have five toes, and that the 268 first and fifth toes of the front feet are reduced, leaving three middle toes with long curved claws, 269 well adapted for digging. The forefoot track (when present) was noted to record the upper surfaces of the three middle claws, which curl under the foot. The hindfoot was described as 270 271 padded and triangular, with five toes, and ~5 cm in length. Movement was described as bipedal, with the forefeet seldom touching the ground. Scuff marks made by dragging the tail were 272 273 reportedly occasionally present.26 274 275 Walker⁴³ described the pangolin as moving along on its hind legs, occasionally dropping onto all 276 fours or using the tail and forelegs for balance. Claws were noted to be prominent, and claws 2, 277 3 and 4 (presumably on the forefeet) were well-developed and recurved. Pangolins were noted to walk mainly on their hind legs in an upright position. Hindfoot tracks were reportedly ~4.5 cm 278 long and wide.43 279 280 281 Stuart and Stuart described (questionably in our opinion) a "typical tramline-like trail", resulting 282 from the fairly wide spacing of the hindfeet, on which the ground pangolin normally walks, with the short, heavily clawed forefeet held clear off the ground.⁴⁰ The forefeet were noted to be used 283 mostly for digging. Hindfoot track length of 6 cm was reported, with slight intoeing. An image of 284 a pangolin trackway was not provided.40 285 286 287 Gutteridge and Liebenberg described the "interesting spoor" of the pangolin, which usually moves bipedally on the rounded hindfeet.⁴⁴ These were noted to drag, as the pangolin walks in 288 289 a kind of shuffle. The unique marking made by the tail was also noted. Hindfoot track length was reported as be 6.5 cm.44 290 291 292 While there are slight differences in the focus of these descriptions, there is substantial 293 agreement, involving a predominantly bipedal gait, with hindfoot tracks 4.5-6.5 cm in size, 294 occasional forefoot traces, and occasional tail drag marks. 295 Interpretation and trackmaker identity 296

During the 2023 visit, the Master Trackers in our team (#D, /N) examined the surface unprimed 298 299 by any hypotheses on trackmaker identity. Once they presented their analysis, the rest of our team provided their own hypotheses and interpretations. The heuristic conclusion of the Master 300 301 Trackers was of a probable pangolin trackway. They inferred a bipedal gait with tracks "soos 'n 302 ronde stok wat in die grond ingedruk is" ("like a round stick poked into the ground") - for them 303 indicative of a pangolin trackmaker. Their reading of the external trackway width and pace length fortified their conclusion. For the rest of us, unfamiliar as we were with such tracks, the 304 305 proposal of a pangolin was a novelty. When photogrammetry images became available, we 306 jointly re-reviewed the lines of evidence.

307

308 Other plausible trackmaker candidates included felids such as serval (Leptailurus serval),

309 caracal (Caracal caracal) and African wild cat (Felils lybica), the viverrids African civet

310 (*Civettictis civetta*), rusty genet (*Genetta maculata*) and large-spotted genet (*Genetta genetta*),

and canids such as jackals and foxes (in a soft, sandy substrate the claw impressions of canids

might not be preserved). There is no evidence in the Pleistocene fossil record or among extant
southern African species of other animals that could have made these tracks. One caveat is that
carnivoran size (hence track size) varied during the Pleistocene, being reportedly larger during
glacial phases.⁴⁵

316

317 The tracks, 5-6 cm in size, are consistent with those of both extant pangolin and serval,

318 although a pangolin's hindfoot track length is marginally greater than those of a serval's forefoot and hindfoot. Contra Stuart and Stuart⁴⁰, the narrow external trackway width is consistent with 319 320 the trackways of both pangolin and, on occasion, serval. However, the trackway widths of 321 caracal⁴⁴ and especially civet (our own observations) are distinctly broader. While the African 322 wild cat can also produce a round track, the smaller size of its track and pace length exclude it. 323 Similar considerations exclude both species of genet. Jackal tracks, in the 5 cm range, are relatively slender and more elongated (especially in the case of the smaller hind foot), definitely 324 325 not "soos 'n ronde stok wat in die grond ingedruk is". The same is true of fox tracks (Cape and Bat-eared), with the front foot of the Bat-eared fox (Octocyon megalotis) measuring but 4.5 326 327 cm44, and the hind foot even smaller,

- 328
- 329 Whereas ground pangolin hindfoot tracks are triangular (with the apex pointing backwards,
- 330 away from the direction of travel) and well-preserved serval tracks exhibit pad and digit
- impressions, none of these features might be present in Cape south coast aeolianites. This may

Commented [A18]: Felis

Commented [A19]: I cannot understand why you are proposing only quadrupedal mammals. The trackway is probably more compatible with a bipedal producer.

332	either be due to a soft, non-cohesive substrate at the time the tracks were registered, the effects	
333	of grain size, or pre-burial or post-re-exposure erosion. ¹ Consequently, the tracks of both ground	
334	pangolin and serval might appear round, without further morphological details. In such a	
335	situation, trackmaker identity would depend more on trackway morphology than of individual	
336	tracks. In the Bosbokfontein trackway, however, there is a hint of a triangular track morphology,	
337	or at least of some tracks appearing wider distally.	
338		
339	The inference of trackmaker direction is based on some tracks appearing slightly wider in their	
340	distal portions, the overall indentation pattern, and the orientation of the 'smudges'. These	 Commented [A20]: Please, use a more descriptive term
341	impressions at the proximal end of the trackway and in line with it are consistent with the scuff-	
342	marks made by the pangolin tail (Figure 5a), and less consistent with tail traces made by servals	
343	or other potential trackmakers.	
344		
345	Pace length is consistently 18-20 cm, and therefore the distance between tracks is about three	
346	times the size of each track. While a pangolin sometimes walks with a shuffle and a relatively	
347	short pace length (Figure 5b) it can also walk with a longer pace length, as in the Bosbokfontein	
348	trackway and in Figure 6a.	 Commented [A21]: The figure have only one image
349		
350	Another potential distinguishing factor involves the relative lightness of the gait. A serval, like all	 Commented [A22]: I do not know what is a light gait, I
351	cats, walks or runs lightly. A ground pangolin, bulky, slower and bipedal, has a more ponderous	suggest using technical terms. Are you referring to footprint depth? In a loose substrate like dry and sloping
352	gait. Therefore pangolin tracks tend to be deeper than serval tracks. While this is not an	carbonate sand , 1-1.5 cm in depth is not deep enough, and the depth can be changed by grain flows triggered by
353	absolute criterion, the depth of the tracks in question $(1.0 - 1.5 \text{ cm})$, bolstered by the notion of	the passage of the animal.
354	the round end of a stick poked into the ground, suggests a pangolin trackmaker.	 Commented [A23]: Unconvincing
355		
356	Opinions from expert southern African trackers were most helpful. We approached Opinions	 Commented [A24]: lc
357	from expert southern African trackers were most helpful. We approached [anonymised],	
358	[anonymised], [anonymised], [anonymised], [anonymised], and [anonymised].	 Commented [A25]: what is this?
359	Their feedback was measuredly supportive. None thought the tracks were inconsistent with	
360	those of a pangolin. [anonymised] provided a confident assessment:	
361	"I agree with trackers that this is pangolin. Definitely not a cat, since the gait is not that of	

- 362 a four-legged animal, whose footprints would be in pairs (front and hind close together).
- 363 Pangolin is only bipedal gait with feet this shape and stride length."

[anonymised] cautioned that a serval's faded tracks could also appear very round and could
 present with a narrow straddle, but, as we have indicated, the track depth tilts towards a
 pangolin.

367 [anonymised] provided a detailed comment:

375

382

389 390

391 392

368"To me, the tracks look like those of Temminck's pangolin, bipedalling along. The length369between prints would be determined by the animal's overall size. Young pangolins have370a much smaller gap between their footprints. The largest adult pangolin I have dealt with371was 18.5 kgs, which nowadays is unusual to find. I think that if it had moved, fast-paced,372through soft mud or sand, the length between prints would have been around 18-20 cm373or even a bit longer, and would be deeper than those of a young pangolin which would374weigh less."

In the less likely scenario that the tracks were registered by a serval, a 'direct register' would be
inferred whereby the hindfoot was placed precisely on top of the forefoot track. (Stealth hunters
often employ this economical, sound-minimising foot-placement pattern.) From a prehistoric
distribution perspective, a serval trackmaker is plausible. Avery reported Pliocene serval records
from Gauteng Province, and Pleistocene and Holocene records from, *inter alia*, the
southwestern Cape.³¹

Our overall conclusion is that the trackway cannot be attributed with absolute certainty to any trackmaker. However, it is most consistent with a ground pangolin trackmaker, distinctly more than a serval or any other candidate species. The Pleistocene distribution range of the ground pangolin included the southwestern Cape, in a situation that is analogous to that of the giraffe, the preferred habitat of both species being savanna woodland. Such habitat might have been present on the now-submerged Palaeo-Agulhas Plain.⁴⁶

Conclusions

A ground pangolin probably walked across a soft, sandy dune surface near the margin of the Palaeo-Agulhas Plain, most likely during MIS6 or MIS 5, leaving a trackway. Eight tracks and, suggestively, two tail traces are preserved and amenable to interpretation. For many, fossil trackways are to body fossils what movies are to photographs, and evocative trackways tell a story of something that might have walked by yesterday, or over 100,000 years ago.

398	
399	While the loose block containing the track-bearing surface is too large to physically recover, the
400	photogrammetry data can be used to make a replica of the trackway, which could be exhibited
401	in the Blombos Museum of Archaeology in Still Bay. What to date is probably the first reported
402	pangolin trackway in the world could thus serve to draw attention to the plight of pangolins
403	worldwide.
404	
405	In a recent publication we described the advantages of collaboration between indigenous
406	Master Trackers and western-trained ichnologists in interpreting Pleistocene trackways. ⁴⁷ The
407	title of a book by Liebenberg specified that the art of tracking was "the origin of science".48 In our
408	experience, the outcomes and conclusions that result are richer for integrating ancient and
409	modern science.
410	
411	
412	Acknowledgements
413	
414	We thank Linda Helm, Louis Liebenberg, Christina Mars, Richard McKibbin, Andrew Paterson,
415	Wendy Panaino, Renée and Niekie Rust, Chris and Mathilde Stuart, Alex Van den Heever, and
416	Richard Webb for their assistance.
417	
418	The data supporting the results of this study are available upon request to the corresponding
419	author.
420	
421	
422	References
423	
424	1. AUTHOR
425	
426	2. Gaudin T. Pholidota. In: Werdelin L, Sanders WJ, editors. Cenozoic Mammals of Africa.
427	Berkeley: University of California Press; 2010. p. 599–602.
428	
120	

429	3.	Gu T-T, Wu H, Yang F, Gaubert P, Heighton SP, Fu Y, et al. Genomic analysis reveals a
430		cryptic pangolin species. Proc Natl Acad Sci USA. 2023;120(40):e2304096120.
431		https://doi.org/10.1073/pnas.2304096120
432		
433	4.	Möller LA. Of the Same Breath: Indigenous Animal and Place Names. Sun Media
434		Bloemfontein (Pty) Ltd.: Bloemfontein; 2017. https://doi.org/10.18820/9781928424031
435		
436	5.	IUCN Red List of Threatened Species. 2023.
437		https://www.iucnredlist.org/search?query=Pangolins&searchType=species
438		
439	6.	D'Cruze N, Assou D, Coulthard E, Norrey J, Megson D, Macdonald DW, et al. Snake oil
440		and pangolin scales: insights into wild animal use at "Marché des Fétiches" traditional
441		medicine market, Togo. Nat Conserv. 2020;39:45–71.
442		https://doi.org/10.3897/natureconservation.39.47879
443		
444	7.	Ingram DJ. 400,000 African pangolins are hunted for meat every year - why it's time to
445		act. The Conversation Africa 2019. https://theconversation.com/400-000-african-
446		pangolins-are-hunted-for-meat-every-year-why-its-time-to-act-111540
447		
448	8.	Malan JA. Lithostratigraphy of the Waenhuiskrans Formation (Bredasdorp Group) –
449		South African Committee for Stratigraphy Lithostratigraphic Series 8. Pretoria:
450		Department of Mineral and Energy Affairs;1989.
451		
452	9.	Malan JA. 1990. The stratigraphy and sedimentology of the Bredasdorp Group,
453		Southern Cape Province, South Africa. MSc thesis. Cape Town: University of Cape
454		Town; 1990.
455		
456	10	Roberts DL, Cawthra HC, Musekiwa C. Dynamics of late Cenozoic aeolian deposition
457		along the South African coast: a record of evolving climate and ecosystems. In: Martini
458		IP, Wanless HR, editors. Sedimentary Coastal Zones from High to Low Latitudes:
459		Similarities and Differences. Special Publication of the Geological Society of London
460		2013:388. p. 353-387 http://dx.doi.org/10.1144/SP388.11
461		
462	11.	Brooke B. The distribution of carbonate eolianite. Earth-Sci Rev. 2001:55;135–164.
463		https://doi.org/10.1016/S0012-8252(01)00054-X

464	
465	12. Marean CW, Cowling RC, Franklin J. The Palaeo-Agulhas Plain: temporal and spatial
466	variation in an extraordinary extinct ecosystem of the Pleistocene of the Cape Floristic
467	Region. In: Cleghorn N, Potts AJ, Cawthra HC, editors. The Palaeo-Agulhas Plain: A
468	Lost World and Extinct Ecosystem. Quat Sci Rev. 2020;235:106161.
469	https://doi.org/10.1016/j.quascirev.2019.106161
470	
471	13. Carr AS, Bateman MD, Roberts DL, Murray-Wallace CV, Jacobs Z, Holmes PJ. The last
472	interglacial sea-level high stand on the southern Cape coastline of South Africa. Quat
473	Res. 2010;73:351–363. <u>https://doi.org/10.1016/j.yqres.2009.08.006</u>
474	14 Departs DL Beteman MD Murroy Wollage CV Corr AS Holmes DL Lest Interplacial
475	14. Roberts DL, Bateman MD, Murray-Wallace CV, Carr AS, Holmes PJ. Last Interglacial
476	fossil elephant trackways dated by OSL/AAR in coastal aeolianites, Still Bay, South
477	Africa. Palaeogeogr Palaeoclimatol Palaeoecol. 2008;257(3):261–279.
478	https://doi.org/10.1016/j.palaeo.2007.08.005
479	45 Determon MD, Carr AS, Dunaille AC, Holman DJ, Daharta DJ, Melavar CJ, et al. The
480	15. Bateman MD, Carr AS, Dunajko AC, Holmes PJ, Roberts DL, McIaren SJ, et al. The
481	evolution of coastal barrier systems: a case study of the Middle-Late Pleistocene
482	Wilderness barriers, South Africa. Quat Sci Rev. 2011;30:63–81.
483	https://doi.org/10.1016/j.quascirev.2010.10.003
484 485	16. Cawthra HC, Jacobs Z, Compton JS, Fisher EC, Karkanas P, Marean CW. Depositional
485	and sea-level history from MIS 6 (Termination II) to MIS 3 on the southern continental
	shelf of South Africa. Quat Sci Rev. 2018;181:156–172.
487	
488	https://doi.org/10.1016/j.quascirev.2017.12.002
489 490	17. Roberts DL, Karkanas P, Jacobs Z, Marean CW, Roberts RG. Melting ice sheets
491	400,000 yr ago raised sea level by 13 m: past analogue for future trends. Earth Planet
492	Sci Lett. 2012;357–358:226–237. https://doi.org/10.1016/j.epsl.2012.09.006
493	Con Low 2012,001 000.220 201. <u>https://doi.org/10.1010/j.0poi.2012.00.000</u>
493 494	18. Carr AS, Bateman MD, Cawthra HC, Sealy J. First evidence for onshore marine isotope
495	stage 3 aeolianite formation on the southern Cape coastline of South Africa. Mar Geol.
496	2019;407:1–15. https://doi.org/10.1016/j.margeo.2018.10.003
497	

498	19. Roberts D, Cole K. Vertebrate trackways in Late Cenozoic coastal eolianites, South
499	Africa. Geological Society of America Abstracts with Programs, XVI INQUA Congress.
500	2003:70(3);196.
501	
502	20. Belvedere M, Farlow JO. A numerical scale for quantifying the quality of preservation of
503	vertebrate tracks. In: Falkingham PL, Marty D, Richter A, editors. Dinosaur tracks: the
504	next steps. Bloomington and Indianapolis: Indiana University Press; 2016. p. 92–99.
505	
506	21. Falkingham PL, Gatesy SM. Discussion: defining the morphological quality of fossil
507	footprints. Problems and principles of preservation in tetrapod ichnology with examples
508	from the Palaeozoic to the present by Lorenzo Marchetti et al. Earth-Sci Rev.
509	2020;208:103320. https://doi.org/10.1016/j. earscirev.2020.103320
510	
511	22. Gatesy SM, Falkingham PL. Neither bones nor feet: track morphological variation and
512	'preservation quality'. J. Vertebr. Paleontol. 2017;37:e1314298.
513	https://doi.org/10.1080/0 2724634.2017.1314298
514	
515	23. AUTHOR ET AL.
516	
517	24. AUTHOR ET AL.
518	
519	25. AUTHOR ET AL.
520	
521	26. Van den Heever A, Mhlongo R, Benadie K. Tracker Manual – a Practical Guide to Animal
522	Tracking in Southern Africa. Struik Nature: Cape Town; 2017.
523 524	27. Matthews NA, Noble TA, Breithaupt BH. Close-range photogrammetry for 3-D ichnology:
525	the basics of photogrammetric ichnology. In: Falkingham PL, Marty D, Richter A, editors.
526	Dinosaur Tracks: The Next Steps. Bloomington: Indiana University Press; 2016. p. 28–
520	55.
528	
528 529	28. Falkingham PL, Bates KT, Avanzini M, Bennett M, Bordy EM, Breithaupt BH, et al. 2018.
530	A standard protocol for documenting modern and fossil ichnological data. Palaeontology,
531	2018;61(4):469-480. https://doi.org/10.1111/pala.12373
532	

533	29. Botha J, Gaudin T. An Early Pliocene pangolin (Mammalia; Pholidota) from
534	Langebaanweg, South Africa. J Vertebr Paleontol. 2007;27:484–491.
535	
536	30. Gaudin TJ, Emry RJ, Wible JR. The phylogeny of living and extinct pangolins
537	(Mammalia, Pholidota) and associated taxa: a morphology based analysis. J.Mammal.
538	2009;16:235–305.
539	
540	31. Avery DM. A Fossil History of Southern African Land Mammals. Cambridge University
541	Press: Cambridge; 2019. <u>https://doi.org/10.1017/9781108647243</u>
542 543	32. Hendey QB. Palaeoecology of the Late Tertiary fossil occurrences in 'E' Quarry,
544	Langebaanweg, South Africa, and a reinterpretation of their geological context. Ann S Afr
545	Mus. 1981;84(1):1–104.
546	
547	33. Klein RG, Avery G, Cruz-Uribe K, Steele TE. The mammalian fauna associated with an
548	archaic hominin skullcap and later Acheulean artifacts at Elandsfontein, Western Cape
549	Province, South Africa. J Hum Evol. 2007;52:164–186.
550	https://doi.org/10.1016/j.jhevol.2006.08.006
551 552	34. Klein RG. The Late Quaternary mammalian fauna of Nelson Bay Cave (Cape Province,
553	South Africa): its implications for megafaunal extinctions and environmental and cultural
554	change. Quat Res. 1972;2:135–142.
555	
556	35. Skead CJ. Historical Mammal incidence in the Cape Province Vol. I. Western Cape and
557	Northern Cape. Vol. II. Eastern Cape, Ciskei and Transkei. Chief Directorate, Nature and
558	Environmental Conservation of the Provincial Administration of the Cape of Good Hope:
559	Cape Town; 1987.
560	
561	36. Layard EL. Catalogue of the specimens in the collection of the South African Museum.
562	Part 1. The Mammalia. Saul Solomon and Co.: Cape Town; 1861.
563	27. Obertridge C.C. Field actes on the first and escend our editions of the Cone Museumle
564	37. Shortridge GC. Field notes on the first and second expeditions of the Cape Museum's
565	mammal survey of the Cape Province; and descriptions of some new subgenera and
566	subspecies. Ann S Afr Mus. 1942;36:27–99.
567 568	38. Lichtenstein WHC. Travels in Southern Africa, in the years 1803, 1804, 1805 and 1806.
569	Vol. 2 (Translation by Anne Plumtre). Van Riebeeck Society No. 11: Cape Town; 1815.
	, ,

570		
571	39. Burchell WJ. Travels in the Interior of Southern Africa. Vol. 2. Longman, Hurst, Rees,	
572	Orme, Brown, and Green: London; 1824.	
573		
574	40. Stuart C, Stuart T. 2019. A Field Guide to the Tracks and Signs of Southern and East	
575	African Wildlife. Struik Nature: Cape Town; 2019.	
576		
577	41. AUTHOR ET AL.	Commented [A27]: please complete
578 579	42. Liebenberg L. 2000. A Photographic Guide to Tracks and Tracking in Southern Africa.	
580	Struik Publishers: Cape Town; 2000.	
581		
582	43. Walker C. Signs of the Wild – A Field Guide to the Spoor & Signs of the Mammals of	
583	Southern Africa. Struik Nature: Cape Town; 2018.	
584		
585	44. Gutteridge L, Liebenberg L. Mammals of Southern Africa and their Tracks and Signs.	
586	Jacana Media (Pty) Limited: Auckland Park; 2021.	
587		
588	45. Klein RG. Carnivore size and Quaternary climatic change in Southern Africa. Quat Res.	
589	1986;26:153–170.	
590 591	46. Cowling RM, Potts AJ, Franklin J, Midgley GF, Engelbrecht F, Marean CW. Describing a	
592	drowned Pleistocene ecosystem: Last Glacial Maximum vegetation reconstruction of the	
593	Palaeo-Agulhas Plain. In: Cleghorn, N., Potts, A.J., Cawthra, H.C. (Eds.), The Palaeo-	
594	Agulhas Plain: A Lost World and Extinct Ecosystem. Quat Sci Rev. 2020;235;105866.	
595	https://doi.org/10.1016/j.quascirev.2019.105866	
596	11129.71401.01g/10.1010/j.44400104.2010.100000	
597	47. AUTHOR ET AL.	Commented [A28]: Please complete
598		
599	48. Liebenberg L. The Art of Tracking – the Origin of Science. David Phillip: Claremont,	
600	South Africa: 1990.	

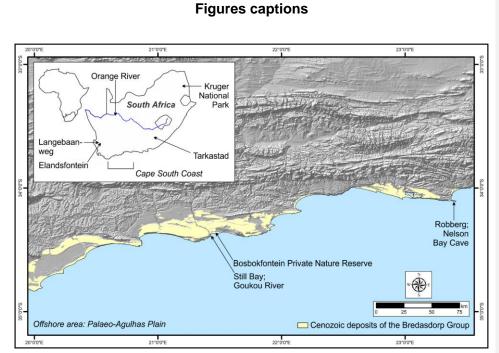


Figure 1: Map of South Africa's coast, indicating the Bosbokfontein site, the extent of Pleistocene

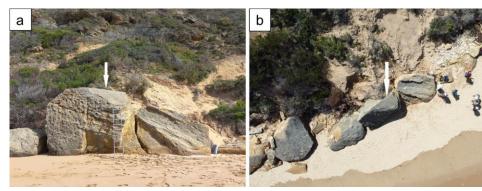


Figure 2: (a) The large loose block containing the purported pangolin trackway on its upper surface; the
ladder length is 410 cm. (b) The track-bearing block, viewed from above using a drone; adult human

610 figures for scale. Arrows point to the track-bearing surface.

deposits, and sites mentioned in the text.

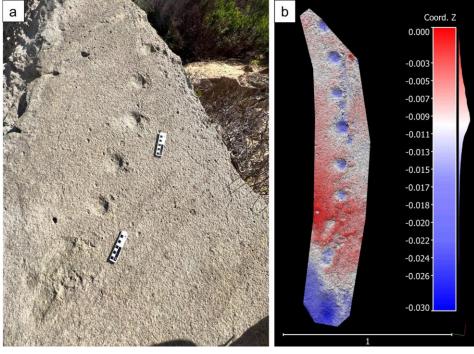
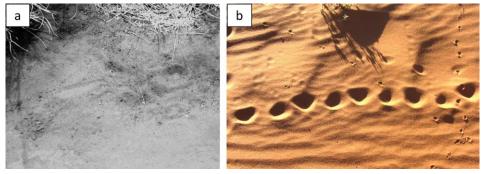



Figure 3: (a) The purported pangolin trackway; scale bars = 10 cm. (b) Photogrammetry colour mesh of
 the trackway; vertical and horizontal scales are in metres.

- 617 Figure 4: (a) A rock engraving of a probable pangolin track in Limpopo Province; reproduced with
- 618 permission from Chris and Mathilde Stuart. (b) The forefeet and hindfeet of a ground pangolin, viewed
- 619 from below; reproduced with permission from [anonymised].
- 620

622 Figure 5: (a) Scuff marks registered by the tail of a ground pangolin; reproduced with permission from

- 623 Bruno Nebe, (b) A trackway of a ground pangolin, showing (in this case) a short pace length; reproduced
- 624 with permission from [anonymised].
- 625

626

627 Figure 6: A ground pangolin walking with a longer pace length; reproduced with permission from

628 [anonymised].

Commented [A29]: A scale is necessary in both images

Commented [A30]: Please indicate also the footprints, trackway width seem to be larger than in the next photo

Commented [A31]: This trackway displays pairs of tracks that is not evident in the fossil example.

1	A PROBABLE PLEISTOCENE PANGOLIN (ORDER PHOLIDOTA)	Commented [A1]: Added upon recommendation of Reviewer 2.
2	TRACKWAY FROM SOUTH AFRICA'S CAPE SOUTH COAST	
3		
4	Abstract	
5		
6	A fossil trackway, attributed to a probable pangolin trackmaker, has been identified on a	
7	Pleistocene aeolianite surface of the Waenhuiskrans Formation in the Bosbokfontein Private	
8	Nature Reserve on South Africa's Cape south coast. The trackway comprises eight tracks and	
9	two probable tail traces. This appears to be the first description of a pangolin trackway in the	
10	global fossil record. The trackway was probably registered during Marine Isotope Stage 6 or 5.	
11	Trackway assessment and interpretation involved the integration of indigenous African and	
12	western-based ichnological approaches, leading to a reasonably confident conclusion on	
13	probable trackmaker identity. Alternative trackmakers (felids, viverrids and canids) were	
14	considered, but excluded or regarded as less likely candidates. There are three Cenozoic body	
15	fossil records of pangolins from the southwestern Cape, which have been assigned to the Giant	
16	Pangolin (Smutsia gigantea). Only Temminck's pangolin (Smutsia temminckii) currently occurs	
17	in southern Africa. All eight extant pangolin species are considered to be threatened with	
18	extinction according to the IUCN Red List of Threatened Species.	Commented [A2]: All Reviewer 1's suggestions were
19		incorporated into these sentences.
20		
21		
22	Significance of the main findings	
23		
24	- A Pleistocene probable pangolin trackway has been identified east of Still Bay, Western Cape	
25	province, South Africa <mark>.</mark>	Commented [A3]: Added in response to Reviewer 1
26	- The identification involved integrating indigenous African and western-based ichnological	suggestion.
27	approaches.	
28	- This appears to be the first known fossilised pangolin trackway.	
29	- The trackway comprises eight tracks and two probable tail traces.	
30	- This discovery could draw attention to the plight of pangolins.	
31		
32		
33	Introduction	

35	Through the Cape south coast ichnology project over 350 Pleistocene vertebrate ichnosites	
36	have been documented along a 350 km stretch of South African coastline. The majority (80%)	
37	represent mammal tracks and traces. ¹ Until now, no pangolin ichnofossils have been identified,	
38	either on the Cape south coast or, to the best of our knowledge, anywhere in the world. Here we	
39	describe a trackway on an aeolianite (cemented dune) palaeosurface in the Bosbokfontein	
40	Nature Reserve, east of Still Bay on the Cape south coast. The lines of evidence converge on a	
41	pangolin as the probable trackmaker.	
42		
43	The order Pholidota contains a single family, Manidae, with eight recognized, extant pangolin	
44	species from sub-Saharan Africa, India, southern China and southeast Asia to the Philippines. ²	
45	A cryptic ninth Asian species was detected in 2023 ³ , and awaits formal description. Four of	
46	these species occur in Africa - two are arboreal, and two (Temminck's pangolin and the giant	
47	pangolin) are ground-dwelling. <mark>Temminck's</mark> pangolin (<mark>S<i>mutsia</i> temminckii, previously <i>Manis</i></mark>	
48	temminckii) is also known as the ground pangolin, the Cape pangolin, or the scaly anteater, and	
49	is the only pangolin species to currently occur in southern Africa. ² In the Ju/'hoan language	
50	Temminck's pangolin is known as 'n‡hòqò', and in Afrikaans as the 'ietermagog'. The latter is	
51	probably of Bantu or Tswana derivation.4	
52		
53	All species of extant pangolin are threatened by poaching and habitat loss, and all are classified	
54	as Vulnerable, Endangered, or Critically Endangered on the IUCN Red List of Threatened	
55	Species. ⁵ Pangolin meat is regarded as a delicacy, and pangolin scales are used in traditional	
56	medicines. ⁶ There is evidence that pangolins are among the most trafficked wild animals on	
57	Earth, and 400,000 African pangolins are estimated to be hunted for their meat annually. ⁷	
58		
59	The tracks described here were initially identified in 2018 by Renée Rust and family. The tracks	
60	are evident on the surface of a large fallen aeolianite block. The putative trackmaker remained	
61	enigmatic until our joint analysis in 2023. Two of us (#D, /N) are indigenous Ju'/hoansi San	
62	Master Trackers, and had an immediate, strong sense of what was being examined. This	
63	presented the opportunity for indigenous and modern scientific tracking exponents to engage in	
64	a productive exchange of ideas, combining culturally honed and experientially grounded	
65	intuitions with modern assessment techniques. This collaborative, inter-disciplinary approach	
66	has allowed us to arrive at a shared conclusion on probable trackmaker identity.	
67		

Commented [A4]: Typo correction as pointed out by Reviewer 2.

Commented [A5]: Changed in response to Reviewer 1 suggestion.

Commented [A6]: Changed in response to Reviewer 1 suggestion, which addresses Reviewer 2's comment as well.

Commented [A7]: Nomenclature corrected in this paragraph and elsewhere according to Reviewer 1 and Reviewer 2 suggestions.

Commented [A8]: As per Reviewer 1 suggestion.

68	The purpose of this article is to describe the trackway, discuss the probable trackmaker,	
69	consider alternative trackmakers, and discuss the relevance of this discovery. We also reflect on	
70	the value of integrating indigenous African and western-based ichnological approaches.	
71		
72		
73	Geological context	
74		
75	Pleistocene carbonate aeolianites of the Waenhuiskrans Formation ⁸ , part of the Neogene	
76	Bredasdorp Group ⁹ , are exposed along portions of the Cape south coast of South Africa, and	
77	have provided evidence for palaeo-shorelines and palaeo-coastal dune activity. ¹⁰ Carbonate	
78	aeolianites are consolidated coastal rock formations consisting of at-least-partially lithified	
79	calcareous wind-blown sand. The trackway described here would have been registered on an	
80	unconsolidated dune surface, which is now consolidated and cemented into aeolianite. Globally,	Commented [A9]: Sentences added for clarification in
81	aeolianites are fairly common in mid-latitude coastal regions between 20° and 40°.11 Throughout	response to Reviewer 3 suggestions
82	the Pleistocene, global sea-level change meant that the Cape south coast landscape was	
83	dynamic. Vertebrate ichnosites encountered on these palaeosurfaces would have been situated	
84	at the margin of the Paleo-Agulhas Plain, most of which is presently submerged, but at times	
85	sea-level oscillations would have exposed the entire plain. ¹² In contrast, sea level was 6-8	Commented [A10]: Changed to lower case 'p', in
86	metres higher than at present at the height of the Marine Isotope Stage (MIS) 5e marine	response to Reviewer 3.
87	transgression at ~126 ka.13	Commented [A11]: Reviewer 1 suggested 'meters', but we think 'metres' is consistent with SAJS style.
88		
89	Optically Stimulated Luminescence (OSL) dating of onshore aeolianites has shown that most	
90	date to MIS 5 and late MIS 6. ¹³⁻¹⁶ MIS 11 deposits ¹⁷ and MIS 3 deposits ¹⁸ have also been	
91	identified, with a resulting age range of dated deposits presently spanning ~400-35 ka. Roberts	
92	and Cole provided an explanation for the profusion of ichnosites, postulating a combination of a	
93	cohesive moulding agent (moist sand), rapid track burial (facilitated by high sedimentation	
94	rates), rapid lithification (via partial solution and re-precipitation of bioclasts), and finally re-	
95	exposure of track-bearing surfaces through shoreline erosion. ¹⁹	
96		
97	In general, the grain size of the substrate inversely influences the preservation quality of fossil	
98	tracks. In Cape south coast Pleistocene deposits, tracks made on moderately coarse-grained	
99	dune surfaces tend to show poor to intermediate preservation quality, certainly inferior to that	
100	seen elsewhere in the world, <mark>for example</mark> in clay or mud substrates on cave floors. Belvedere	Commented [A12]: Clarified in response to Reviewer 3
101	and Farlow introduced a four-point preservation scale, in which 0 represents an unidentifiable	comment.

102	track, and 3 represents a track of exceptional quality. ²⁰ It is unusual for tracks within the Cape	
103	south coast deposits to rise above 2 on this scale.	
104		
105	Active shoreline erosion causes coastal cliffs to fragment or collapse, sometimes exposing new	
106	ichnosites, while known sites deteriorate in quality or loose blocks slump into the ocean.	
107	Ichnosites are thus ephemeral. The taphonomic erosive effects of wind and water, either pre-	
108	burial or post re-exposure, can result in loss of track preservation quality. In the latter case, even	
109	if the tracks displayed anatomical fidelity at the time of re-exposure, over time their quality can	
110	deteriorate. ¹ The causes of relatively poor preservation, such as moderately large grain size (in	
111	this case medium-grained sand), pre-burial erosion and post-exposure erosion, may be difficult	Commented [A13]: Clarified in response to Reviewer 2.
112	to distinguish, especially if it is not known for how long the surface has been exposed. ^{21,22}	
113		
114	The Bosbokfontein tracksite is located in a remote section of coastline (Figure 1), characterised	
115	by aeolianite cliffs as high as 30 m. High tides and storm surges cause cliff sections to collapse,	
116	whereupon loose blocks come to rest on unstable slopes or near the high-tide mark at the cliff	
117	base.	
118		
119	One section in this region, situated ~8 km east of the Bosbokfontein site, had been dated prior	
120	to our studies. ¹³ Ages obtained through OSL dating produced a range of 140 \pm 8 ka to 91 \pm 5	
121	ka. Our subsequent work has yielded several results of relevance here (in each case a five-digit	
122	number is preceded by "Leic"). The closest of these lies 4.5 km east of the Bosbokfontein site,	
123	where an age of 126 \pm 9 ka was obtained (Leic21005). ²³ Other results from sites located slightly	
124	further east include 161 \pm 12 ka (Leic20033), 139 \pm 10 ka (Leic20031), 134 \pm 9 ka (Leic21008),	
125	and 109 \pm 9 ka (Leic20024). ²³⁻²⁵ Although direct stratigraphic correlation between these sites is	
126	not feasible, due to an absence of laterally persistent layers or marker beds, it nonetheless	Commented [A14]: Added in response to Reviewer 3
127	seems likely that the Bosbokfontein track-bearing surface occurs in deposits within the age	request.
128	range of ~161–91 ka, from MIS 6 or MIS 5.	
129		
130		
131	Methods	
132		
133	Track measurements (in cm) included length, width, depth, pace length, and stride length.	
134	External trackway width was measured in cm, representing "the distance between the footfall of	
135	left and right feet, measured between the outside extremities of the tracks". ²⁶ Global Positioning	

System locality readings were taken using a hand-held Garmin 60 device. Locality data were 136 stored with the African Centre for Coastal Palaeoscience at Nelson Mandela University, to be 137 made available to researchers upon request. 138 139 The tracksite was photographed, and photogrammetric analysis performed.^{27,28} 3D models were 140 generated with Agisoft MetaShape Professional (v. 1.0.4) using an Olympus TG-5 camera (focal 141 length 4.5 mm; resolution 4000 x 3000; pixel size 1.56 x 1.56 µm). The final images were 142 143 rendered using CloudCompare (v.2.10-beta). The tracks could be assessed by climbing to the top of the block and examining the surface, but for optimal recording, including photogrammetry 144 145 studies, access via a portable ladder proved useful. A DJI Mini 2 drone with an inbuilt DJI 146 camera/video was used to obtain further photographs. 147 148 Having viewed the tracksite in detail together, and examined photographs and photogrammetry models, we reviewed our findings and opinions. This permitted further integration of the 149 perspectives and interpretations of Master Trackers and western-trained ichnologists. 150 Furthermore, we engaged with some of southern Africa's tracking (neoichnology) experts, 151 152 asking for their opinions on trackmaker identity based on photographic and photogrammetric 153 images. 154 155 Results 156 157 The tracksite is located within the Bosbokfontein Private Nature Reserve, approximately 6.5 km 158 159 east of the mouth of the Goukou River and the community of Still Bay. It occurs on the upper 160 surface of a large ex situ block, which has tumbled down the vegetated slopes from cliffs above and come to rest above the high-tide mark (Figure 2). The maximum length of the block is ~7 m, 161 with a maximum thickness of 4.5 m. However, the approximately triangular-shaped track-162 bearing surface is smaller, with maximum dimensions of ~200 x 180 cm. Slight deterioration in 163 the preservation quality of the tracks and trackway occurred since identification in 2018, but 164 165 assessment and interpretation of tracks and trackway morphology remained feasible. 166 167 The block has come to rest at an angle, and the track-bearing surface faces seaward and 168 skywards, in a southeasterly direction. The trackway, which is ~160 cm in length, is thus aligned

169 in a southeast-northeast direction as the loose block is currently orientated, but this may be

Commented [A15]: Thanks to Reviewer 1 for the correction.

170	subject to change following storm surges. Viewed in cross section, the block exhibits laminar		
171	bedding, mostly parallel but with slight distortion in places and faint cross-bedding. The relative		
172	absence of cross-bedding suggests that the tracks might have been registered on a more level		
173	interdune area. The trackway is interpreted here with the viewer facing landwards and		
174	northwest, as if the trackmaker was progressing up the current slope of the loose block. The		Commented [A16]: These sentences have been
175	tracks are preserved in concave epirelief.		rephrased for clarification and to avoid the confusion that resulted from our initial sentences, all in response to
176			Reviewer 3's comments.
177	Eight tracks are evident (Figure 3), but the distal track occurs at the edge of the surface and is		Commented [A17]: Corrected, as pointed out by Reviewer 3.
178	partial, and the two proximal tracks are partially obscured by two elongated depressions,		Commented [A18]: Changed from 'smudges' to
179	aligned in approximately the same direction as the trackway. These are approximately 10.0-		elongated depressions' here and elsewhere, as suggested by Reviewer 3.
180	12.5 cm long and 4.5–6.0 cm wide. Tracks 3 through 7 therefore offer the best potential for	C	
181	analysis. The trackway curves gently to the left, such that its distal end is orientated $\sim 30^\circ$		
182	leftward of that of its proximal end. Faint displacement rims partially encircle some of the tracks,		
183	suggesting that the tracks were registered on a slightly sloping surface.		
184			
185	Track lengths (5.5–6.0 cm) and track widths (5.0–5.5 cm) are relatively constant. Tracks 6 and 7		
186	appear slightly wider in their anterior portions. Pace length in tracks 3 through 7 is relatively		Commented [A19]: Two reviewers (1 and 3) commented
187	constant (18–20 cm). Track depth varies from 1.0 to 1.5 cm, with the anterior portions of the		on our use of 'distal' and 'proximal' in relation to track norphology - it is clear that these terms have created
188	tracks slightly deeper than the <mark>posterior</mark> portions. The external trackway width appears narrow,		confusion. We have addressed this by using 'anterior' or posterior' where appropriate.
189	approximately 7.5 cm.	C	
190			
191			
192	Discussion		
193			
194	The prehistoric and historic distribution of southern African		
195	pangolins		
196			
197	The global record of pangolins extends back to the Oligocene Epoch ²⁹ , as reviewed by Gaudin		
198	et al. ³⁰ The prehistoric distribution of pangolins in southern Africa in the palaeontological record		
199	is meagre for the southern Cape and western Cape: there are only three reported Cenozoic		
200	fossils of pangolins from these regions. ³¹ These all represent skeletal evidence, and we are not		
201	aware of trace fossil records of pangolins in the global ichnology record. The three reported		

202 southwestern Cape fossil records are now summarised.

203		
204	Hendey reported an unstudied early Pliocene pangolin from the 'E' Quarry at Langebaanweg in	
205	the Western Cape province near the South African west coast. ³² Botha and Gaudin ²⁹ formally	_
206	described this specimen as probably ground dwelling, and possibly having engaged in a	
207	quadrupedal gait similar to that of the extant giant pangolin (Smutsia gigantea). It was	
208	suggested that it may have used its forelimbs more than S. temminckii. The specimen was	
209	assigned to S. gigantea, making it the oldest known representative of that species. ²⁹	
210		
211	Klein et al. described a pangolin assigned to the genus <i>Phataginus</i> from the Elandsfontein Main	
212	site in the Western Cape province on South Africa's west coast, ~350 km WNW of the tracksite	
213	reported on here. ³³ It was described as an "extralimitary species" that contributed to the	
214	exceptional faunal diversity of the site. The age of the faunal assemblage was estimated to be in	
215	the range of 1.0–0.6 Ma. ³³	
216		
217	The closest pangolin body fossil site to the Bosbokfontein site, temporally and spatially, was	
218	reported by Klein from Nelson Bay Cave near Robberg, 180 km east of Bosbokfontein. ³⁴ It was	
219	located in Late Pleistocene deposits dating to 18–16 ka. It was described as the "Cape	
220	pangolin, <i>Manis</i> cf. <mark>temminckii</mark> ". ³⁴	
221		
222	The southern African Holocene and historic record is more extensive for Temminck's pangolin.	
223	Possible sources include historical accounts, ethnographic records, rock art and place names.	
224	Möller noted that Temminck's pangolin had a wide distribution and occurred all over southern	
225	Africa, and that the lack of early reports might be attributable to its nocturnal habits. ⁴ Skead ³⁵	
226	reported that a probable pangolin had been recorded in 1825 from the Tarkastad or	
227	Queenstown area (in the current Eastern Cape province), and that this probably constituted the	
228	southernmost record for the species (~32° S). Skead35 quoted Layard36 that the pangolin was	
229	"not now" found in the Cape Colony (i.e., south of the Orange River), perhaps implying that it	
230	had occurred previously within it. Shortridge ³⁷ reported that it was absent from "Little	
231	Namaqualand" but noted a pangolin skin from the Upington area and records south of the	
232	Orange River from Prieska and Colesberg. The 1865 holotype is from Litakun (Latakou), ~250	_
233	km north of the Orange River, and north of present-day Kuruman. ³⁰ Lichtenstein ³⁸ and Burchell ³⁹	
234	also reported the occurrence of the pangolin in the Litakun area.	
235		

Commented [A20]: Decapitalised the P in province throughout, where appropriate, as per Reviewer 1 suggestion..

Commented [A21]: Corrected with thanks to reviewers 1 and 3.

Commented [A22]: Clarification as requested by Reviewer 3.

Möller provided two place names, letermagô and Khwaru, that refer to pangolins.⁴ Both are in 236 237 the Kruger National Park in South Africa's Limpopo Province, ~1,500 km northeast of the Bosbokfontein site. They are therefore unhelpful regarding a potential southern Cape 238 239 distribution range. 240 241 Rock art can provide information on prehistoric pangolin distribution, although it only implies the artist's awareness that the species existed, not its occurrence in that precise locality. Despite 242 243 consultation with rock art experts, we are not aware of rock art depicting pangolins in southern Africa other than a site in Limpopo province (Figure 4a), where a frieze of engraved animal 244 245 tracks of eight species contains an engraving of a possible pangolin hindfoot track.⁴⁰ 'Fragile 246 Images', a YouTube video, includes footage of the engraving at 12 minutes and 10 seconds: https://www.youtube.com/watch?v=Ra12BKeH7Js. 247 248 In summary, the body fossil record demonstrates the presence of pangolins in the southwestern 249 Cape region of South Africa during the Pliocene and Pleistocene. The situation is perhaps 250 251 analogous to that of the giraffe (Giraffa camelopardalis), for which there is no body-fossil 252 evidence from the Pleistocene in the southwestern Cape, but a trace fossil record confirms its 253 presence.⁴¹ The giraffe tracksite lies less than eight km east of the Bosbokfontein tracksite. The presence of giraffe tracks implies the presence of trees and a probable savanna 254 palaeoenvironment.⁴¹ This may have been suitable for Temminck's pangolin, with a preferred 255 256 habitat of savanna woodland. The record from Nelson Bay Cave³⁴ lies just within the last glacial period, when aspects of this habitat might still have been present. Historical records, place 257 258 names and rock art do not contribute to an understanding of pangolin distribution in the 259 southwestern Cape.

260

261 Pangolin track morphology

262

Southern African neoichnologists are fortunate in having five tracking manuals to refer to.^{26,39,42-} ⁴⁴ Each describes Temminck's pangolin tracks, reviewed here in order of publication date. Figure 4b depicts the forefeet and hindfeet of a Temminck's pangolin.

Liebenberg described five toes on the forefeet (the first with a small nail and the central three with long, strongly curved claws), and five toes on the hindfeet, each with a short nail-like claw that sometimes registers an impression in the tracks.⁴² The body was noted to be balanced on

270	the hindfeet when walking, with the forefeet and tail held off the ground. Tracks were noted to	
271	show the rounded pads of the hindfeet with four nails usually touching the ground. The	
272	occasional tail scrape and traces made by the front edges of the front claws were also noted.	
273	Hindfoot tracks were reported as 6 cm in length. ⁴²	
274		
275	Van den Heever et al. ²⁶ also noted that both forefeet and hindfeet have five toes, and that the	
276	first and fifth toes of the front feet are reduced, leaving three middle toes with long curved claws,	
277	well adapted for digging. The forefoot track (when present) was noted to record the upper	
278	surfaces of the three middle claws, which curl under the foot. The hindfoot was described as	
279	padded and triangular, with five toes, and ~5 cm in length. Movement was described as bipedal,	
280	with the forefeet seldom touching the ground. Scuff marks made by dragging the tail were	
281	reportedly occasionally present.26	
282		
283	Walker ⁴³ described the pangolin as moving along on its hind legs, occasionally dropping onto all	
284	fours or using the tail and forelegs for balance. Claws were noted to be prominent, and claws 2,	
285	3 and 4 (presumably on the forefeet) were well-developed and recurved. Pangolins were noted	
286	to walk mainly on their hind legs in an upright position. Hindfoot tracks were reportedly \sim 4.5 cm	
287	long and wide.43	
288		
289	Stuart and Stuart described (questionably in our opinion) a "typical tramline-like trail", resulting	
290	from the fairly wide spacing of the hindfeet, on which Temminck's pangolin normally walks, with	
291	the short, heavily clawed forefeet held clear off the ground. ⁴⁰ The forefeet were noted to be used	
292	mostly for digging. Hindfoot track length of 6 cm was reported, with slight intoeing. An image of	
293	a pangolin trackway was not provided.40	
294		
295	Gutteridge and Liebenberg described the "interesting spoor" of the pangolin, which usually	
296	moves bipedally on the rounded hindfeet. ⁴⁴ These were noted to drag, as the pangolin walks in	
297	a kind of shuffle. The unique marking made by the tail was also noted. Hindfoot track length was	
298	reported as being 6.5 cm.44	(
299		
300	While there are slight differences in the focus of these descriptions, there is substantial	
301	agreement, involving a predominantly bipedal gait, with hindfoot tracks 4.5-6.5 cm in size,	
302	occasional forefoot traces, and occasional tail drag marks.	
303		

Commented [A23]: Reviewer 1 typo correction.

304 Interpretation and trackmaker identity

305

306 During the 2023 visit, the Master Trackers in our team (#D, /N) examined the surface unprimed 307 by any hypotheses on trackmaker identity. Once they presented their analysis, the rest of our 308 team provided their own hypotheses and interpretations. The heuristic conclusion of the Master Trackers was of a probable pangolin trackway. They inferred a bipedal gait with tracks "soos 'n 309 310 ronde stok wat in die grond ingedruk is" ("like a round stick poked into the ground") - for them indicative of a pangolin trackmaker. Their reading of the external trackway width and pace 311 312 length fortified their conclusion. For the rest of us, unfamiliar as we were with such tracks, the proposal of a pangolin was a novelty. When photogrammetry images became available, we 313 314 jointly re-reviewed the lines of evidence. 315

- 316 Other plausible trackmaker candidates include felids such as serval (*Leptailurus serval*), caracal
- 317 (Caracal caracal) and African wild cat (Felis lybica), the viverrids African civet (Civettictis
- 318 *civetta*), rusty genet (*Genetta maculata*) and large-spotted genet (*Genetta genetta*), and canids
- 319 such as jackals and foxes (in a soft, sandy substrate the claw impressions of canids might not

320 be preserved). Bipedal avian trackmakers would be expected to leave at least some evidence of

321 didactyl, tridactyl or tetradactyl morphology⁴⁵, and the two elongated depressions are

inconsistent with an avian origin. There is no evidence in the Pleistocene fossil record or among
 extant southern African species of other animals that could have made these tracks. One caveat

is that carnivoran size (hence track size) varied during the Pleistocene, being reportedly larger
 during glacial phases.⁴⁶

326

327 The tracks, 5-6 cm in size, are consistent with those of both extant Temminck's pangolin and 328 serval, although a pangolin's hindfoot track length is marginally greater than those of a serval's forefoot and hindfoot. Contra Stuart and Stuart⁴⁰, the narrow external trackway width is 329 consistent with the trackways of both Temminck's pangolin and, on occasion, serval. However, 330 the trackway widths of caracal⁴⁴ and especially civet (our own observations) are distinctly 331 332 broader. While the African wild cat can also produce a round track, the smaller size of its track 333 and pace length exclude it. Similar considerations exclude both species of genet. Jackal tracks, 334 in the 5 cm range, are relatively slender and more elongated (especially in the case of the 335 smaller hind foot), definitely not "soos 'n ronde stok wat in die grond ingedruk is". The same is 336 true of fox tracks (Cape and Bat-eared), with the front foot of the Bat-eared fox (Octocyon 337 megalotis) measuring but 4.5 cm⁴⁴, and the hind foot even smaller,

Commented [A24]: Corrected as pointed out by Reviewer 3.

Commented [A25]: Inserted in response to Reviewer 3 comment.

338	
339	Whereas Temminck's pangolin hindfoot tracks are triangular (with the apex pointing backwards,
340	away from the direction of travel) and well-preserved serval tracks exhibit pad and digit
341	impressions, none of these features might be present in Cape south coast aeolianites. This may
342	either be due to a soft, non-cohesive substrate at the time the tracks were registered, the effects
343	of grain size, or pre-burial or post-re-exposure erosion. ¹ Consequently, the tracks of both
344	Temminck's pangolin and serval might appear round, without further morphological details. In
345	such a situation, trackmaker identity would depend more on trackway morphology than of
346	individual tracks. In the Bosbokfontein trackway, however, there is a hint of a triangular track
347	morphology, or at least of some tracks appearing wider in their anterior portions.
348	
349	The inference of trackmaker direction is based on some tracks appearing slightly wider in their
350	anterior portions, the overall indentation pattern, and the orientation of the two elongated
351	depressions. These impressions at the proximal end of the trackway and in line with it are
352	consistent with the scuff-marks made by the pangolin tail (Figure 5a), and less consistent with
353	tail traces made by servals or other potential trackmakers.
354	
355	Pace length is consistently 18–20 cm, and therefore the distance between tracks is about three
356	times the size of each track. While a pangolin sometimes walks with a shuffle and a relatively
357	short pace length (Figure 5b) it can also walk with a longer pace length when not foraging, as in
358	the Bosbokfontein trackway and in Figure <mark>6</mark> .
359	
360	Another potential distinguishing factor involves the relative lightness of the gait. A serval, like all
361	cats, walks or runs lightly. A Temminck's pangolin, bulky, slower and bipedal, has a more
362	ponderous gait. Therefore, pangolin tracks tend to be deeper than serval tracks. While this is
363	not an absolute criterion, the depth of the tracks in question (1.0–1.5 cm), bolstered by the
364	notion of the round end of a stick poked into the ground, is more consistent with a pangolin
365	trackmaker.
366	
367	Opinions from expert southern African trackers were most helpful. We approached
368	[anonymised], [anonymised], [anonymised], [anonymised], [anonymised], and [anonymised].
369	Their feedback was measuredly supportive. None thought the tracks were inconsistent with

370 those of a pangolin. [anonymised] provided a confident assessment:

Commented [A26]: Two reviewers commented on our use of 'distal' and 'proximal' - it is clear that these terms have created confusion. We have addressed this by using 'anterior' or 'posterior' where appropriate.

Commented [A28]: Corrected as pointed out by Reviewer 3.

Commented [A27]: Added in response to Reviewer 2.

Commented [A29]: Softened the text here in response to Reviewer 3 comment.

371	"I agree with trackers that this is pangolin. Definitely not a cat, since the gait is not that of	
372	a four-legged animal, whose footprints would be in pairs (front and hind close together).	
373	Pangolin is only bipedal gait with feet this shape and stride length."	
374	[anonymised] cautioned that a serval's faded tracks could also appear very round and could	
375	present with a narrow straddle, but, as we have indicated, the track depth tilts towards a	
376	pangolin.	
377	[anonymised] provided a detailed comment:	
378	"To me, the tracks look like those of Temminck's pangolin, bipedalling along. The length	
379	between prints would be determined by the animal's overall size. Young pangolins have	
380	a much smaller gap between their footprints. The largest adult pangolin I have dealt with	
381	was 18.5 kgs, which nowadays is unusual to find <mark>. I</mark> think that if it had moved, fast-paced,	
382	through soft mud or sand, the length between prints would have been around <mark>18–20</mark> cm	
383	or even a bit longer, and would be deeper than those of a young pangolin which would	
384	weigh less."	
385		
386	Furthermore, one of the three very knowledgeable anonymous reviewers of this manuscript	
387	(under strict confidentiality of the peer review process) sent the image of the fossilised trackway to	
387 388	(under strict confidentiality of the peer review process) sent the image of the fossilised trackway to two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis.	
		Commented [A
388	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis.	Commented [A Reviewer 2 comm
388 389	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis.	
388 389 390	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis. Both the reviewer and the two colleagues agreed with the interpretation of a pangolin <mark>trackway</mark> .	
388 389 390 391	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis. Both the reviewer and the two colleagues agreed with the interpretation of a pangolin trackway. In the less likely scenario that the tracks were registered by a serval, a 'direct register' would be	
388 389 390 391 392	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis. Both the reviewer and the two colleagues agreed with the interpretation of a pangolin trackway. In the less likely scenario that the tracks were registered by a serval, a 'direct register' would be inferred whereby the hindfoot was placed precisely on top of the forefoot track. (Stealth hunters	
388 389 390 391 392 393	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis. Both the reviewer and the two colleagues agreed with the interpretation of a pangolin trackway. In the less likely scenario that the tracks were registered by a serval, a 'direct register' would be inferred whereby the hindfoot was placed precisely on top of the forefoot track. (Stealth hunters often employ this economical, sound-minimising foot-placement pattern.) From a prehistoric	
388 389 390 391 392 393 394	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis. Both the reviewer and the two colleagues agreed with the interpretation of a pangolin trackway. In the less likely scenario that the tracks were registered by a serval, a 'direct register' would be inferred whereby the hindfoot was placed precisely on top of the forefoot track. (Stealth hunters often employ this economical, sound-minimising foot-placement pattern.) From a prehistoric distribution perspective, a serval trackmaker is plausible. Avery reported Pliocene serval records	
388 389 390 391 392 393 394 395	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis. Both the reviewer and the two colleagues agreed with the interpretation of a pangolin trackway. In the less likely scenario that the tracks were registered by a serval, a 'direct register' would be inferred whereby the hindfoot was placed precisely on top of the forefoot track. (Stealth hunters often employ this economical, sound-minimising foot-placement pattern.) From a prehistoric distribution perspective, a serval trackmaker is plausible. Avery reported Pliocene serval records from Gauteng Province, and Pleistocene and Holocene records from, <i>inter alia</i> , the	
388 389 390 391 392 393 394 395 396	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis. Both the reviewer and the two colleagues agreed with the interpretation of a pangolin trackway. In the less likely scenario that the tracks were registered by a serval, a 'direct register' would be inferred whereby the hindfoot was placed precisely on top of the forefoot track. (Stealth hunters often employ this economical, sound-minimising foot-placement pattern.) From a prehistoric distribution perspective, a serval trackmaker is plausible. Avery reported Pliocene serval records from Gauteng Province, and Pleistocene and Holocene records from, <i>inter alia</i> , the	
388 389 390 391 392 393 394 395 396 397	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis. Both the reviewer and the two colleagues agreed with the interpretation of a pangolin trackway. In the less likely scenario that the tracks were registered by a serval, a 'direct register' would be inferred whereby the hindfoot was placed precisely on top of the forefoot track. (Stealth hunters often employ this economical, sound-minimising foot-placement pattern.) From a prehistoric distribution perspective, a serval trackmaker is plausible. Avery reported Pliocene serval records from Gauteng Province, and Pleistocene and Holocene records from, <i>inter alia</i> , the southwestern Cape. ³¹	
388 389 390 391 392 393 394 395 396 397 398	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis. Both the reviewer and the two colleagues agreed with the interpretation of a pangolin trackway. In the less likely scenario that the tracks were registered by a serval, a 'direct register' would be inferred whereby the hindfoot was placed precisely on top of the forefoot track. (Stealth hunters often employ this economical, sound-minimising foot-placement pattern.) From a prehistoric distribution perspective, a serval trackmaker is plausible. Avery reported Pliocene serval records from Gauteng Province, and Pleistocene and Holocene records from, <i>inter alia</i> , the southwestern Cape. ³¹	
388 389 390 391 392 393 394 395 396 397 398 399	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis. Both the reviewer and the two colleagues agreed with the interpretation of a pangolin trackway. In the less likely scenario that the tracks were registered by a serval, a 'direct register' would be inferred whereby the hindfoot was placed precisely on top of the forefoot track. (Stealth hunters often employ this economical, sound-minimising foot-placement pattern.) From a prehistoric distribution perspective, a serval trackmaker is plausible. Avery reported Pliocene serval records from Gauteng Province, and Pleistocene and Holocene records from, <i>inter alia</i> , the southwestern Cape. ³¹ Our overall conclusion is that the trackway cannot be attributed with absolute certainty to any trackmaker. However, it is most consistent with a Temminck's pangolin trackmaker, distinctly	
388 389 390 391 392 393 394 395 396 397 398 399 400	two colleagues who have worked with Temminck's pangolin for many years on a day-to-day basis. Both the reviewer and the two colleagues agreed with the interpretation of a pangolin trackway. In the less likely scenario that the tracks were registered by a serval, a 'direct register' would be inferred whereby the hindfoot was placed precisely on top of the forefoot track. (Stealth hunters often employ this economical, sound-minimising foot-placement pattern.) From a prehistoric distribution perspective, a serval trackmaker is plausible. Avery reported Pliocene serval records from Gauteng Province, and Pleistocene and Holocene records from, <i>inter alia</i> , the southwestern Cape. ³¹ Our overall conclusion is that the trackway cannot be attributed with absolute certainty to any trackmaker. However, it is most consistent with a Temminck's pangolin trackmaker, distinctly more than a serval or any other candidate species. The Pleistocene distribution range of the	

Commented [A30]: Paragraph added in response to Reviewer 2 comments.

405	
406	Conclusions
407	
408	A Temminck's pangolin probably walked across a soft, sandy dune surface near the margin of
409	the Palaeo-Agulhas Plain, most likely during MIS 6 or MIS 5, leaving a trackway. Eight tracks
410	and, suggestively, two tail traces are preserved and amenable to interpretation. For many, fossil
411	trackways are to body fossils what movies are to photographs, and evocative trackways tell a
412	story of something that might have walked by yesterday, or over 100,000 years ago.
413	
414	While the loose block containing the track-bearing surface is too large to physically recover, the
415	photogrammetry data can be used to make a replica of the trackway, which could be exhibited
416	in the Blombos Museum of Archaeology in Still Bay. What to date is probably the first reported
417	pangolin trackway in the world could thus serve to draw attention to the plight of pangolins
418	worldwide.
419	
420	In a recent publication we described the advantages of collaboration between indigenous
421	Master Trackers and western-trained ichnologists in interpreting Pleistocene trackways. ⁴⁸ The
422	title of a book by Liebenberg specified that the art of tracking was "the origin of science". ⁴⁹ In our
423	experience, the outcomes and conclusions that result are richer for integrating ancient and
424	modern science.
425	
426	
427	Acknowledgements
428	
429	We thank Linda Helm, Louis Liebenberg, Christina Mars, Richard McKibbin, Andrew Paterson,
430	Wendy Panaino, Renée and Niekie Rust, Chris and Mathilde Stuart, Alex Van den Heever, and
431	Richard Webb for their assistance. We are grateful to the three anonymous reviewers for their
432	thorough and helpful comments, which led to substantial improvements in the manuscript.
433	
434	The data supporting the results of this study are available upon request to the corresponding
435	author.
436	

438		References
439		
440	1.	AUTHOR
441		
442	2.	Gaudin T. Pholidota. In: Werdelin L, Sanders WJ, editors. Cenozoic Mammals of Africa.
443		Berkeley: University of California Press; 2010. p. 599-602.
444		
445	3.	Gu T-T, Wu H, Yang F, Gaubert P, Heighton SP, Fu Y, et al. Genomic analysis reveals a
446		cryptic pangolin species. Proc Natl Acad Sci USA. 2023;120(40):e2304096120.
447		https://doi.org/10.1073/pnas.2304096120
448		
449	4.	Möller LA. Of the Same Breath: Indigenous Animal and Place Names. Sun Media
450		Bloemfontein (Pty) Ltd.: Bloemfontein; 2017. https://doi.org/10.18820/9781928424031
451		
452	5.	IUCN Red List of Threatened Species. 2023.
453		https://www.iucnredlist.org/search?query=Pangolins&searchType=species
454		
455	6.	D'Cruze N, Assou D, Coulthard E, Norrey J, Megson D, Macdonald DW, et al. Snake oil
456		and pangolin scales: insights into wild animal use at "Marché des Fétiches" traditional
457		medicine market, Togo. Nat Conserv. 2020;39:45–71.
458		https://doi.org/10.3897/natureconservation.39.47879
459 460	7	Ingram DJ. 400,000 African pangolins are hunted for meat every year – why it's time to
461	7.	act. The Conversation Africa 2019. https://theconversation.com/400-000-african-
462		pangolins-are-hunted-for-meat-every-year-why-its-time-to-act-111540
463		pargoins are named for meat every year why its time to act 111040
464	8.	Malan JA. Lithostratigraphy of the Waenhuiskrans Formation (Bredasdorp Group) -
465		South African Committee for Stratigraphy Lithostratigraphic Series 8. Pretoria:
466		Department of Mineral and Energy Affairs;1989.
467		
468	9.	Malan JA. 1990. The stratigraphy and sedimentology of the Bredasdorp Group,
469		Southern Cape Province, South Africa. MSc thesis. Cape Town: University of Cape
470		Town; 1990.
471		

472	10. Roberts DL, Cawthra HC, Musekiwa C. Dynamics of late Cenozoic aeolian deposition
473	along the South African coast: a record of evolving climate and ecosystems. In: Martini
474	IP, Wanless HR, editors. Sedimentary Coastal Zones from High to Low Latitudes:
475	Similarities and Differences. Special Publication of the Geological Society of London
476	2013:388. p. 353–387 http://dx.doi.org/10.1144/SP388.11
477	
478	11. Brooke B. The distribution of carbonate eolianite. Earth-Sci Rev. 2001:55;135–164.
479	https://doi.org/10.1016/S0012-8252(01)00054-X
480 481	12. Marean CW, Cowling RC, Franklin J. The Palaeo-Agulhas Plain: temporal and spatial
482	variation in an extraordinary extinct ecosystem of the Pleistocene of the Cape Floristic
483	Region. In: Cleghorn N, Potts AJ, Cawthra HC, editors. The Palaeo-Agulhas Plain: A
484	Lost World and Extinct Ecosystem. Quat Sci Rev. 2020;235:106161.
485	https://doi.org/10.1016/j.quascirev.2019.106161
485	<u>https://doi.org/10.1010/j.quascilev.2019.100101</u>
480	13. Carr AS, Bateman MD, Roberts DL, Murray-Wallace CV, Jacobs Z, Holmes PJ. The last
488	interglacial sea-level high stand on the southern Cape coastline of South Africa. Quat
489	Res. 2010;73:351-363. https://doi.org/10.1016/j.yqres.2009.08.006
490	
491	14. Roberts DL, Bateman MD, Murray-Wallace CV, Carr AS, Holmes PJ. Last Interglacial
492	fossil elephant trackways dated by OSL/AAR in coastal aeolianites, Still Bay, South
493	Africa. Palaeogeogr Palaeoclimatol Palaeoecol. 2008;257(3):261–279.
494	https://doi.org/10.1016/j.palaeo.2007.08.005
495	
496	15. Bateman MD, Carr AS, Dunajko AC, Holmes PJ, Roberts DL, Mclaren SJ, et al. The
497	evolution of coastal barrier systems: a case study of the Middle-Late Pleistocene
498	Wilderness barriers, South Africa. Quat Sci Rev. 2011;30:63–81.
499	https://doi.org/10.1016/j.quascirev.2010.10.003
500	10 Country LIC, Jacoba 7 Computer IC, Fisher FC, Karkanas D, Marson CM/ Depositional
501	16. Cawthra HC, Jacobs Z, Compton JS, Fisher EC, Karkanas P, Marean CW. Depositional
502	and sea-level history from MIS 6 (Termination II) to MIS 3 on the southern continental
503	shelf of South Africa. Quat Sci Rev. 2018;181:156–172.
504	https://doi.org/10.1016/j.quascirev.2017.12.002
505	

506	17. Roberts DL, Karkanas P, Jacobs Z, Marean CW, Roberts RG. Melting ice sheets	
507	400,000 yr ago raised sea level by 13 m: past analogue for future trends. Earth Planet	
508	Sci Lett. 2012;357-358:226-237. https://doi.org/10.1016/j.epsl.2012.09.006	
509		
510	18. Carr AS, Bateman MD, Cawthra HC, Sealy J. First evidence for onshore marine isotope	
511	stage 3 aeolianite formation on the southern Cape coastline of South Africa. Mar Geol.	
512	2019;407:1–15. <u>https://doi.org/10.1016/j.margeo.2018.10.003</u>	
513 514	19. Roberts D, Cole K. Vertebrate trackways in Late Cenozoic coastal eolianites, South	
514	Africa. Geological Society of America Abstracts with Programs, XVI INQUA Congress.	
516	2003:70(3);196.	
517	2003.70(3),130.	
518	20. Belvedere M, Farlow JO. A numerical scale for quantifying the quality of preservation of	
519	vertebrate tracks. In: Falkingham PL, Marty D, Richter A, editors. Dinosaur tracks: the	
520	next steps. Bloomington and Indianapolis: Indiana University Press; 2016. p. 92–99.	
521		
522	21. Falkingham PL, Gatesy SM. Discussion: defining the morphological quality of fossil	
523	footprints. Problems and principles of preservation in tetrapod ichnology with examples	
524	from the Palaeozoic to the present by Lorenzo Marchetti et al. Earth-Sci Rev.	
525	2020;208:103320. https://doi.org/10.1016/j. earscirev.2020.103320	
526		
527	22. Gatesy SM, Falkingham PL. Neither bones nor feet: track morphological variation and	
528	'preservation quality'. J. Vertebr. Paleontol. 2017;37:e1314298.	
529	https://doi.org/10.1080/0 2724634.2017.1314298	
530		
531	23. AUTHOR ET AL.	
532		
533	24. AUTHOR ET AL.	
534		
535	25. AUTHOR ET AL.	
536		
537	26. Van den Heever A, Mhlongo R, Benadie K, Thomas I. Tracker Manual – a Practical	
538	Guide to Animal Tracking in Southern Africa. Struik Nature: Cape Town; 2024.	Commented [A31]: Reference has been updated, now 2024 instead of older 2017 edition
539		2024 instead of older 2017 edition.

540	27. Matthews NA, Noble TA, Breithaupt BH. Close-range photogrammetry for 3-D ichnology:
541	the basics of photogrammetric ichnology. In: Falkingham PL, Marty D, Richter A, editors.
542	Dinosaur Tracks: The Next Steps. Bloomington: Indiana University Press; 2016. p. 28-
543	55.
544	29. Fallyingham DL. Batas KT. Avanzini M. Bannatt M. Bardy FM. Braithaunt DH. at al. 2019
545	28. Falkingham PL, Bates KT, Avanzini M, Bennett M, Bordy EM, Breithaupt BH, et al. 2018.
546	A standard protocol for documenting modern and fossil ichnological data. Palaeontology,
547	2018;61(4):469–480. https://doi.org/10.1111/pala.12373
548 549	29. Botha J, Gaudin T. An Early Pliocene pangolin (Mammalia; Pholidota) from
550	Langebaanweg, South Africa. J Vertebr Paleontol. 2007;27:484–491.
551	
552	30. Gaudin TJ, Emry RJ, Wible JR. The phylogeny of living and extinct pangolins
553	(Mammalia, Pholidota) and associated taxa: a morphology based analysis. J.Mammal.
554	2009;16:235–305.
555	
556	31. Avery DM. A Fossil History of Southern African Land Mammals. Cambridge University
557	Press: Cambridge; 2019. <u>https://doi.org/10.1017/9781108647243</u>
558 559	32. Hendey QB. Palaeoecology of the Late Tertiary fossil occurrences in 'E' Quarry,
560	Langebaanweg, South Africa, and a reinterpretation of their geological context. Ann S Afr
561	Mus. 1981;84(1):1–104.
562	
563	33. Klein RG, Avery G, Cruz-Uribe K, Steele TE. The mammalian fauna associated with an
564	archaic hominin skullcap and later Acheulean artifacts at Elandsfontein, Western Cape
565	Province, South Africa. J Hum Evol. 2007;52:164–186.
566	https://doi.org/10.1016/j.jhevol.2006.08.006
567	
568	34. Klein RG. The Late Quaternary mammalian fauna of Nelson Bay Cave (Cape Province,
569	South Africa): its implications for megafaunal extinctions and environmental and cultural
570	change. Quat Res. 1972;2:135–142.
571	25 Okeed O. L. Historias Mammal insidence in the Osme Devices Met. J. Master, O
572	35. Skead CJ. Historical Mammal incidence in the Cape Province Vol. I. Western Cape and
573	Northern Cape. Vol. II. Eastern Cape, Ciskei and Transkei. Chief Directorate, Nature and
574	Environmental Conservation of the Provincial Administration of the Cape of Good Hope:
575	Cape Town; 1987.

577	36. Layard EL. Catalogue of the specimens in the collection of the South African Museum.	
578	Part 1. The Mammalia. Saul Solomon and Co.: Cape Town; 1861.	
579 580	37. Shortridge GC. Field notes on the first and second expeditions of the Cape Museum's	
581	mammal survey of the Cape Province; and descriptions of some new subgenera and	
582	subspecies. Ann S Afr Mus. 1942;36:27–99.	
583 584	38. Lichtenstein WHC. Travels in Southern Africa, in the years 1803, 1804, 1805 and 1806.	
585	Vol. 2 (Translation by Anne Plumtre). Van Riebeeck Society No. 11: Cape Town; 1815.	
586 587	39. Burchell WJ. Travels in the Interior of Southern Africa. Vol. 2. Longman, Hurst, Rees,	
588	Orme, Brown, and Green: London; 1824.	
589 590	40. Stuart C, Stuart T. 2019. A Field Guide to the Tracks and Signs of Southern and East	
591	African Wildlife. Struik Nature: Cape Town; 2019.	
592 593	41. AUTHOR ET AL.	
594 595	42. Liebenberg L. 2000. A Photographic Guide to Tracks and Tracking in Southern Africa.	
596	Struik Publishers: Cape Town; 2000.	
597 598	43. Walker C. Signs of the Wild – A Field Guide to the Spoor & Signs of the Mammals of	
599	Southern Africa. Struik Nature: Cape Town; 2018.	
600		
601	44. Gutteridge L, Liebenberg L. Mammals of Southern Africa and their Tracks and Signs.	
602	Jacana Media (Pty) Limited: Auckland Park; 2021.	
603 604	45. AUTHOR ET AL.	Commented [A32]: New reference added in response to
605		Reviewer 3 comment.
606	46. Klein RG. Carnivore size and Quaternary climatic change in Southern Africa. Quat Res.	
607	1986;26:153–170.	
608 609	47. Cowling RM, Potts AJ, Franklin J, Midgley GF, Engelbrecht F, Marean CW. Describing a	
610	drowned Pleistocene ecosystem: Last Glacial Maximum vegetation reconstruction of the	
611	Palaeo-Agulhas Plain. In: Cleghorn, N., Potts, A.J., Cawthra, H.C. (Eds.), The Palaeo-	

612	Agulhas Plain: A Lost World and Extinct Ecosystem. Quat Sci Rev. 2020;235;105866.		
613	https://doi.org/10.1016/j.quascirev.2019.105866		
614 615	48. AUTHOR ET AL.		Commented [A33]: This reference is still 'in press', but
616	49. Liebenberg L. The Art of Tracking – the Origin of Science. David Phillip: Claremont.	F	publication appears to be imminent.
617	49. Liebenberg L. The Art of Tracking – the Origin of Science. David Phillip. Claremont,		
618	South Africa; 1990.		

Figure captions

620	
621	
622	Figure 1: Map of South Africa's coast, indicating the Bosbokfontein site, the extent of Pleistocene
623	deposits, and sites mentioned in the text.
624	
625	Figure 2: (a) The large loose block containing the purported pangolin trackway on its upper surface; the
626	ladder length is 410 cm. (b) The track-bearing block, viewed from above using a drone; adult human
627	figures for scale. Arrows point to the track-bearing surface.
628	
629	Figure 3: (a) The purported pangolin trackway; scale bars = 10 cm. (b) Photogrammetry colour mesh of
630	the trackway; vertical and horizontal scales are in metres.
631	
632	Figure 4: (a) Rock engraving of a probable pangolin track in Limpopo Province; reproduced with
633	permission from [anonymised], (b) The forefeet and hindfeet of a Temminck's pangolin, viewed from
634	below; reproduced with permission from [anonymised],
635	
636	Figure 5: (a) Scuff marks registered by the tail of a Temminck's pangolin; reproduced with permission
637	from [anonymised], (b) A trackway of a Temminck's pangolin, showing (in this case) a short pace length;
638	reproduced with permission from [anonymised],
639	
640	Figure 6: A Temminck's pangolin walking with a longer pace length; reproduced with permission from
641	[anonymised],