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Research on wastewater treatment processes in Maluti-a-Phofung Municipality (South Africa) has 
revealed that substandard wastewater management in this region contributes to terrestrial and aquatic 
pollution. Because this pollution poses a threat to the environment, there is a pressing need to reduce 
the environmental impact of poorly managed sewage sludge in the region. Biochar has been regarded 
as a cost-effective way of reducing chemical toxicity in terrestrial environments. In the present study, we 
aimed to investigate the effectiveness of biochar in the remediation of the toxicity of sewage sludge using 
the earthworm Eisenia fetida. Sewage sludge was collected from a local wastewater treatment plant and  
E. fetida were exposed to 0, 25, 50, and 100% non-amended and 10% biochar-amended sludge. After  
28 days, survival, biomass and reproduction were assessed. Separately, in clean artificial soil, E. fetida 
was exposed to 5, 10 and 15% biochar amendment for 96 hours to determine if biochar amendment 
alone could be harmful to E. fetida. The results showed no significant differences in all parameters 
between the worms exposed to non-amended sludge and 10% biochar-amended sludge. Assessment 
of acetylcholinesterase and catalase activities in the earthworms that were exposed to biochar via clean 
soil revealed that 10% and 15% biochar amendment rates caused the worms to experience significant 
levels of neurotoxic and oxidative stress (p < 0.05). These findings reveal that biochar alone is likely to 
have adverse effects on soil organisms, and amendment rates higher or equal to 10% are not suitable to 
alleviate the toxic effects of sewage sludge.

Significance:

This study can be used as a reference in the usage of biochar as a toxicity remediator. Different biochar 
rates (≥ 10%) can have different effects on soil-dwelling organisms. Policymakers can use this study when 
constructing laws regarding the disposal of sewage sludge by wastewater treatment plants.

Introduction
Sewage sludge is one of the by-products of the wastewater treatment process. It contains high levels of organic 
matter and nutrients and is valued for agricultural application.1,2 Studies show that the addition of sludge to degraded 
soils leads to soil restoration and fertilisation which results in increased crop production.1,3 Despite this benefit, 
sewage sludge is still regarded as waste with a potential for significant risk to the environment4, especially if applied 
without proper chemical and ecotoxicological consideration4,5.

Sewage sludge is usually disposed of via landfilling, incineration, and cropland application.6 Other than its enhancing 
effect on soil productivity, biochar use in cropland application has gained attention as a means of waste disposal.7 
Some of the disadvantages of this method of disposal include odours, aesthetics, the high load of pathogenic 
microorganisms, and the high concentrations of both metals and organic pollutants.8,9 Research has demonstrated 
the potential for sewage sludge to induce behavioural abnormalities, increase mortality and inhibit the growth of 
invertebrates.4 Klee et al.10 observed that sewage sludge can induce genotoxic effects in the earthworm Eisenia 
andrei. Malińska et al.11 reported that the heavy metals from sewage sludge can bioaccumulate in earthworm 
tissues, which poses a risk to the food chain because of potential biomagnification.12

Specifications from the existing South African sludge management regulations indicate three categories of sewage 
sludge: a microbiological class, a stabilisation class, and a pollutant class.13 The pollutant class depends on the 
concentration of eight potentially toxic metals: arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb),  
mercury (Hg), nickel (Ni), and zinc (Zn).13 The concentration of these metals is used to further classify the sludge 
into three subclasses, which are: pollutant class a (best quality), pollutant class b (intermediate quality) and 
pollutant class c (worst quality).13,14

The known toxicity of sewage sludge has prompted the need to find affordable and effective means of decreasing 
its potential deleterious effects before it is discarded through landfilling or harnessed for agricultural application.6 
Biochar has been identified as a suitable candidate to play such a role in reducing the toxic effects of sewage 
sludge.15 Biochar is a solid material obtained from the pyrolysis of a wide range of plant and animal biomasses.16 
Together with bio-oil and biofuel, biochar is one of the by-products of this process.17-19 Several studies dealing with 
the application of select biochar types to contaminated soils have reported successful reduction in the toxicity, 
bioavailability and leachability of soil contaminants.20-28

In the present study, we aimed to investigate the effectiveness of biochar in the remediation of the toxicity of 
sewage sludge on the survival, reproduction, and biomass of the earthworm Eisenia fetida. A secondary aim was 
to assess, at the biomarker level, if biochar on its own could prove detrimental to earthworms. We hypothesised 
that the inclusion of biochar in the soil would improve the survival, reproduction and biomass of the earthworms.  
We also expected that the potential beneficial effects of biochar at the level of the whole organism would be 
supported by concurrent biomarker responses within the organism.
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Materials and methods

Study area

Sewage sludge was collected from the wastewater treatment plant 
(WWTP) in Harrismith (28°16’46.5”S; 29°05’46.9”E). This town is 
located in the Maluti-A-Phofung municipality within the Drakensberg 
Afromontane region of the eastern Free State Province of South Africa. 
The area rises from 1500 m to 2400 m above sea level and experiences 
summer rainfall (www.floodmap.net). The chosen WWTP receives 
wastewater from neighbouring households and industries in the region, 
which is a densely populated peri-urban economic hub, with several 
industries such as textile, dairy, and aluminium industries.29

Experimental organism

Adult E. fetida earthworms bred in the Ecotoxicology Laboratory, housed 
in the Department of Zoology and Entomology of the University of the Free 
State, QwaQwa Campus, were used as the experimental organism. The 
earthworms were maintained on a diet consisting only of dried cow dung .

Preparation of exposure substrates

Preparation of soil

The artificial soil used during this study was prepared following the 
Organisation for Economic Co-operation and Development (OECD) 
guidelines.30 The soil was composed of 20% kaolin clay, 70% air-dried 
quartz sand, and 10% sphagnum peat (pH of 5.5–6.5). The prepared 
OECD artificial soil was used both as a clean control substrate and in 
the preparation of varying concentrations (amendment rates) of sewage 
sludge.

Preparation of non-biochar amended sewage

The sewage sludge was dried at room temperature before use. After 
drying, it was blended and sieved through a 2 mm sieve. Non-biochar 
amended sewage was prepared by mixing OECD artificial soil with 
sewage sludge. The mixing was carried out to make the following 
concentrations of the sludge: 0 (OECD artificial soil control), 25, 50, and 
100% sewage sludge. The total exposure substrate weight per treatment 
was 500 g. Distilled water was used to moisten each soil treatment to 
40–60% of their respective water-holding capacity.30

Preparation of biochar amended sewage sludge

Biochar from pine wood obtained in pellet form was purchased from  
C FERT™ South Africa. According to the manufacturer, it was made at 
a pyrolysis temperature range of 400–500 °C. This produced a biochar 
with about 100 μm pore size on average and containing 30.35% 
carbon, 3.54% nitrogen, 0.13% potassium, 0.02% phosphorus, 20.31% 
calcium, 0.34% magnesium, and 0.14% sulfur. Biochar-amended 
substrates were made by replacing 50 g of the 500 g non-amended 
OECD/sewage substrates with 50 g of biochar for each concentration 
(including the control), thus making a 10% biochar amendment. Thus, 
a 10% biochar amendment rate was applied to the 0, 25, 50, and 100% 
sludge treatments. Distilled water was used to moisten each biochar-
amended treatment to 40–60% of their respective water-holding 
capacity. All the treatments were prepared and left undisturbed for  
7 days before exposure. This was necessary to allow for biochar 
activation by the microorganisms in the sewage sludge.

Metal contents of the sewage sludge

The total concentrations of arsenic (As), cadmium (Cd), chromium (Cr),  
copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), and zinc (Zn) in the 
sewage sludge were determined following the EPA 3052 digestion 
method31, while the concentrations of metals readily available in the 
water phase of the soil were obtained through the water extraction 
method.14 These analyses were performed at the Institute for Soil, 
Climate, and Water (an Institute of the South African Agricultural 
Research Council located in Pretoria, Gauteng Province). Inductively 
coupled plasma-optical emission spectroscopy (ICP-OES) (Perkin-
Elmer Optima 3000 DV) was used to determine the concentrations of 
the metals of interest.

Ecotoxicological assays

Prior to exposure, the earthworms were weighed, and their masses 
were recorded. Ten adult E. fetida were exposed to the biochar-amended 
and non-amended treatments and incubated at 20 ± 2 °C (in a Labcon 
low-temperature incubator) for 28 days. All exposures were carried 
out in triplicate. During the exposure period, the worms were fed 5 g 
of ground and moist cattle manure once a week. After 4 weeks, the 
earthworms were weighed once again, and their masses were recorded. 
The number of cocoons laid in each treatment was recorded. To assess 
whether biochar on its own could prove detrimental to earthworms at 
biomarker level, in another experiment, we exposed 10 adult E. fetida to 
500 g of OECD artificial soil (no sewage sludge involved) amended with 
0, 5, 10, and 15% biochar. The exposures conducted in triplicate were 
incubated at 20 ± 1 °C (in a Labcon low-temperature incubator) for a 
duration of 4 days. This exposure duration was chosen both to fill a gap 
in the literature because studies on biochar often last longer26,32-34, and 
to increase the chances of observing biomarker responses, which can 
peak in the early days of the experiment and vanish after relatively longer 
exposure durations35. No feeding took place during the exposure period. 
After 96 h, the worms were stored at −80 °C until acetylcholinesterase 
(AChE) and catalase analyses.

Determination of acetylcholinesterase activity

Acetylcholinesterase (AChE) is an enzyme involved in the hydrolysis 
of acetylcholine (which is an essential neurotransmitter of the central 
nervous system) into choline.36 The enzyme was measured to find out 
whether the sewage sludge had neurotoxic effects on the earthworms. 
To prepare tissue homogenates for AchE activity, two worms from 
each exposure treatment were defrosted. Three to five segments of 
the tail end were sectioned for the assessment of AChE activity and 
protein determination. Tris-buffer (pH 7.4) was used to homogenise 
the tissues, which were centrifuged at 9500 g for 10 min at 4 °C. 
Supernatants were then used for AChE and protein analyses. The 
protein concentrations of the homogenates were determined using the 
Bradford method.37 Ellman’s method38 was used for the assessment of 
AChE activity. For each tissue homogenate, measurements were made 
in triplicate. AChE activity was determined by calculating the average 
absorbance of the readings at each time interval from time 0 to time 
6 min. Readings were done at 412 nm in 1-min intervals over a 6-min 
period. The linear graph for each sample was drawn and expressed as 
the change in absorbance over time. Then, the gradient was calculated 
for each sample curve and divided by 6 (minutes). AChE activity was 
calculated as follows: (Absorbance/min/mg protein) = (Abs/min)/mg 
protein.

Determination of catalase activity

Catalase activity was determined following the method of Cohen et al.39 
The reaction mixture contained the sample homogenate (10 µL) in 10 µL  
of 0.09 M phosphate buffer (pH 7.0) and 93 µL of 6 mM (30%) hydrogen 
peroxide, 19 µL of 6 N sulfuric acid and 130 µL of 0.01 N potassium 
permanganate. The degradation of hydrogen peroxide by the catalase 
present in the samples was measured within 60 s at 490 nm and 
expressed in μmol H2O2/min/mg protein.

Statistical analysis

The data obtained from this study were subjected to statistical analysis 
using Microsoft Excel 2010 and GraphPad Prism version 13.2. Statistical 
analyses of survival, reproduction, biomass and acetylcholinesterase 
activity data were performed in GraphPad Prism using a one-way ANOVA 
followed by a Bonferroni post-test for pairwise comparisons. The level of 
significance was p < 0.05. Finally, ToxRat® version 2.10.05 was used to 
generate median lethal concentrations (LC50) and half-maximal effective 
concentrations (EC50) whenever possible.

results and discussion

Concentration of heavy metals in sewage sludge

Using the EPA 3052, the concentration of metals observed in sewage 
sludge in this study were in the following order: Zn > Cu > Pb > Cr >  
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Ni > As > Hg > Cd, varying from 840 mg/kg for Zn to 0.66 mg/kg 
for Cd (Table 1). The water extraction method revealed the following 
order: Zn > Cu > Ni > Hg > As > Cd > Pb > Cr, varying from 4.76 
mg/kg for Zn to 0.03 mg/kg for Cr. (Table 1). When comparing the 
EPA 3052 and the water extraction data, it was discovered that Zn 
was the chemical with the highest concentration in both methods, 
while Cd had the lowest concentration in the EPA 3052, and Cr had 
the lowest concentration in the water extraction method. This trend 
is consistent with the findings of Berrow and Webber40, Zufiaurre et 
al.41 and Mosolloane et al.14, who reported concentrations of heavy 
metals in sewage sludge from treatment plants in England, Spain 
and South Africa, respectively. High total concentrations of metals 
indicate that the wastewater treatment plants receive raw sewage from 
anthropogenic sources like industries and domestic activities, while 
high concentrations of Zn and Cu can be attributed to the high organic 
content of the sewage sludge.41,42 In South Africa, the works of Snyman 
and Herselman43 and Herselman and Snyman13 are used to classify 
sewage sludge based on the concentration thresholds of the following 
metals: As, Cd and Hg (40 mg/kg); Ni and Pb (420 mg/kg); Cr, Cu 
and Zn (2800 mg/kg). The total metal concentrations of the sewage 
sludge used in this study were evaluated using this classification 
system; consequently, the sewage was classified as ‘best quality’ 

pollutant class a sludge. It was found that, when combining the 
concentrations of As, Cd and Hg, they summed to 3.68 mg/kg, which 
is below the threshold of 40 mg/kg. The concentrations of Ni and 
Pb added up to 62.51 mg/kg, which did not exceed the threshold of  
420 mg/kg. Finally, Cr, Cu and Zn added up to 1001.61 mg/kg, which 
was below the threshold of 2800 mg/kg (Table 1). Therefore, from the 
results of the total metal analysis, the concentrations of metals were 
below the specified limits.

Nevertheless, the presence of these heavy metals in the sewage sludge 
and the water extract especially, implies that they could be a source 
of pollution and toxic stress in soils, especially in agricultural lands 
where they can accumulate to higher levels.44,45 The relatively low 
concentrations of metals in the water extract nevertheless point to lower 
potential for significant toxic effects. These metals were similarly found 
in minute quantities in the sewage sludge sampled from the same WWTP 
by Mosolloane et al.14

Ecotoxicological assays

Survival of Eisenia fetida in biochar-amended and non-amended 

sewage sludge

The results show that there was no significant difference (p > 0.05) 
in the survival rates of E. fetida exposed to biochar-amended and non-
amended sewage sludge for 28 days (Figure 1). This indicates that 
the presence of biochar did not statistically affect or improve the odds 
of survival of E. fetida. Nevertheless, survival rates in the 25, 50 and 
100% sewage sludge treatments was 100% (Figure 1). In comparison, 
in the absence of biochar in the same treatments, survival rates were 
60, 80 and 90% for 25, 50 and 100% treatments, respectively. Such 
beneficial attributes of biochar to the survival of the earthworm E. 
fetida have been reported by several authors: Elliston and Oliver46, 
Malińska et al.11, Malińska et al.47, Kim et al.48, Zhang et al.49 and Nyoka  
et al.26 Earthworms have been reported to thrive in sewage sludge 
amended with biochar by ingesting sewage and biochar particles, later 
dispersing them through casting.50,51 Domínguez et al.52 also reported that 
E. fetida utilises sewage sludge as a food source, thus its ability to do well 
in soil amended with sewage sludge. This report has been corroborated 
by the works of Contreras-Ramos et al.53 and Malińska et al.47 It is worth 
noting that a sewage sludge of ‘best quality’ class a should not inflict 
significant mortality on such terrestrial worms as previously reported by 
Mosolloane et al.14 using the portworm Enchytraeus albidus.

Metal (mg/kg) EPA 3052 method Water extraction

Cr 22.11 0.03

Ni 11.5 0.53

Cu 139.5 0.88

Zn 840 4.76

Cd 0.66 < 0.5

Pb 51.01 < 0.2

Hg 0.80 0.16

As 2.22 0.14

table 1: Total EPA 3052 and water extraction results for metals that 
were found in the sewage sludge

Figure 1: Survival rate of adult Eisenia fetida worms at 20 °C after 28 days of exposure to non-biochar and 10% biochar amended sewage sludge from the 
Harrismith Wastewater Treatment Plant. Error bars represent standard deviations.
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reproduction of Eisenia fetida in biochar-amended and  

non-amended sewage sludge

For both biochar-amended and non-amended sewage sludge, there was 
no significant reduction in cocoon production in the 100% (pure) sewage 
sludge when compared to the control (p > 0.05; Figure 2). Despite this 
observation, in pure sewage sludge, the reproduction of E. fetida was 
visibly hampered in both the biochar-amended and non-amended sewage 
sludge. This observation is similar to the findings of Mosolloane et al.14 
who reported a lack of reproductive output in the pot worm Enchytraeus 
albidus after exposure to the pure sewage sludge from the same WWTP.

In the present study, the lack of significant differences in cocoon 
production between all the treatments indicates that biochar amendment 
did not improve the odds of reproduction in E. fetida. Although some 
authors, such as Gong et al.54 and Nyoka et al.34, have reported improved 
reproduction rates in E. fetida in biochar-amended soil, others, such 
as Li et al.33, have reported the contrary in the same species. The 
same dichotomy exists in enchytraeids, with some26 finding improved 
reproduction rates in Enchytraeus albidus and others55 reporting no 
effect of biochar on the reproduction of Enchytraeus crypticus. Dlamini 
and Voua Otomo56 have argued that these seemingly heterogeneous 
findings could be explained by differences in both biochar amendment 
rates and the sources of the feed used to make the biochar. Indeed, in 
both studies by Nyoka et al.26,34, an amendment rate of 10% biochar was 
used, and the biochar was made of pine wood. In the study by Gong  
et al.54, the rates varied from 0% to 6% and bamboo was used to make 
the biochar. Li et al.33 used apple wood chips as a source of their biochar 
and applied amendment rates ranging from 0% to 20%. Marks et al.55 
used even greater rates, ranging from 0% to 50% with biochar made 
from poplar and pine wood.

Biomass change in Eisenia fetida exposed to biochar-amended 

and non-amended sewage sludge

After 28 days of exposure, there were no significant changes in the 
biomass of E. fetida in all amended and non-amended treatments except 
for the 50% biochar amended treatment in which a significant weight 
gain was observed (Figure 3). The results from this study are similar 
to the results obtained by Liesch et al.32 after they looked at the effect 
of pine chip biochar on the growth and survival of E. fetida. Although 
not always significant, Figure 3 reveals a slight increase in biomass in 
all biochar-amended treatments, indicating that the presence of biochar 

has a somewhat positive effect on the biomass of E. fetida. This could 
be attributed to the fact that there was an increase in nutrient content in 
the soils amended with biochar. It has been reported that biochar can 
increase the capacity of the soil to absorb and replenish plant nutrients, 
which in turn has a positive impact on soil invertebrates.57,58 The 
observed increase in earthworm biomass is supported by the findings 
of Li et al.33 who reported biomass gains after incubating E. fetida for  
28 days in soil amended with different rates (0.1,10, and 20%) of biochar 
produced from apple wood chips. Atkinson et al.59 reported that biochar 
can convert organic matter into useful and consumable nutrients or 
elements that soil invertebrates use as food, thus resulting in increases 
in biomass. However, other authors, such as Gomez-Eyles et al.60, have 
reported weight loss in E. fetida exposed to soil treated with deciduous, 
hardwood-derived biochar.

Acetylcholinesterase activity of Eisenia fetida

After assessing the activity of AChE in different rates of biochar in the 
absence of sewage sludge, significantly high activity could only be 
observed in the 15% biochar amended soil (Figure. 4). These findings 
demonstrate that even in the absence of a pollutant, high biochar 
amendment levels, particularly above 15%, resulted in an increase 
in AChE activity. Khalid et al.61 claimed that adding biochar from 
corncob biomass to soils alone can harm earthworms at a molecular 
level, in addition to affecting their behaviour, growth and reproduction. 
Furthermore, they reported a substantial increase in AChE inhibition  
(i.e. low AChE activity) in the earthworm Pheretima posthuma at 5% 
and 10% amendment rates after 30 days of exposure in soil amended 
with 0, 5, 10, and 25% biochar. Such inhibition in AChE activity was not 
observed in the present study. The pine tree biochar assessed herein 
favoured biochar activity, especially in the 15% amendment rate. The 
divergence in findings between our studies could be due to differences 
in both the biomass used to create the biochar and the duration of 
exposure, which was substantially shorter in our case (4 vs 30 days).

Catalase activity of Eisenia fetida

Catalase activity was similar in the earthworms exposed to all biochar 
amendment rates except for the 10% amendment in which it was 
significantly higher. This indicates an increase in oxidative stress 
associated with greater rates of biochar amendment (Figure 5), 
especially considering that catalase activity was statistically similar in 
both highest amendment rates.

Figure 2: Number of Eisenia fetida cocoons produced at 20 °C after 28 days of exposure to non-biochar and 10% biochar amended sewage from the 
Harrismith Wastewater Treatment Plant. Error bars represent standard deviations.
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Our findings are supported by those of Han et al.62 who found no 
appreciable variations in the catalase activity of E. fetida exposed to 
0–5% biochar made from rice straws, although other authors such as 
Shi et al.63 have reported a significant increase in catalase activity in  
E. fetida exposed to soil amended with less than 5% biochar made from 
cow dung. In our study, such low biochar rates did not result in any 
significant alterations in catalase activity, indicating that the feed used 
to make the biochar might play a role in the observed variations. The 
pyrolysis temperature might also be a factor. Shi et al.63 discovered 
that biochar made at a pyrolysis temperature of 550 °C resulted in 

more increased catalase activity than those at the lower temperature of  
350 °C or the higher temperature of 750 °C. Similarly, Kim et al.48 
examined how biochar generated from biomasses of perilla, sesame, 
and pumpkin seeds affected the earthworm E. fetida, and discovered 
that at 5% amendment, the biochar produced at a pyrolysis temperature 
of 550 °C caused higher catalase activity than biochar produced at a 
temperature of 300 °C. The biochar utilised in this study was made at 
a temperature range that should cause relatively less catalase activity 
(400–450 °C), although our pine tree biochar did cause noticeable 
catalase increases at 10% amendment (Figure 5).

Figure 3: Comparison of the biomass of Eisenia fetida at 20 °C before and after 28 days of exposure to non-biochar and 10% biochar amended sewage 
sludge from the Harrismith Wastewater Treatment Plant. Error bars represent standard deviations.

Figure 4: AChE activity in Eisenia fetida after a 96-h exposure to biochar-amended (5, 10 and 15%) and non-amended OECD artificial soil. Data represented 
are the means of three replicates. Error bars represent standard deviations and different letters represent significant differences.
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Conclusions
We set out to test whether biochar amendment could help improve the 
quality of sewage sludge by assessing multiple endpoints at biomarker 
and whole organism levels in the earthworm Eisenia fetida. Our results 
show little to no benefit to selected life-cycle parameters. A biochar 
rate experiment revealed that biochar rates of 10% and 15% could 
significantly increase catalase and AChE activities, respectively. Overall, 
the results indicate that biochar amendment could help organisms such 
as earthworms better withstand environmental stress brought about by 
sewage sludge application or be used as a prior step to environmental 
disposal of wastewater treatment waste.
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