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Given a growing global population and shift to embrace the blue economy, a need for marine spatial planning 
(MSP) has emerged in South Africa to sustainably resolve the rising conflicts over the use of marine 
and seabed resources and services. A well-developed marine spatial plan yields numerous ecological, 
social and economic benefits. These are achieved through mediating between spatially conflicting 
economic drivers’ interests (e.g. commercial fishing, tourism, mining), preventing their activities from 
compromising thresholds of an environment’s sustainability. Within the MSP framework, high-resolution 
geospatial datasets are required to document and describe the seabed in the highest possible detail. At 
any scale, integrated analysis of seabed geomorphology and habitats is anticipated to greatly improve 
the understanding of ecosystem functioning from a multidisciplinary perspective, whilst improving MSP 
procedures and management of marine space. South Africa is the first of few African countries to have 
an approved and implemented MSP framework, but is still somewhat behind globally in implementing 
large-scale regional hydroacoustic surveys to cover the country’s vast offshore territory. The deficiency 
of hydroacoustic surveys is perhaps due to a relative lack of funds and poor communication about the 
value of multibeam echo-sounder (MBES) derived data, whilst marine geoscience remains a scarce skill 
in the country. This review paper presents a geological perspective of MSP and explores (1) the value that 
seabed mapping offers MSP specifically and (2) the need to increase seabed mapping with MBES, using 
a recently initiated project from the South African east coast as a case study.

Significance:
The collected MBES data (our case study) provides unprecedented seabed detail of the complex reef habitat 
and adjacent areas within specific management zones of the uThukela Banks Marine Protected Area. We 
reveal seabed features and their spatial distribution at a scale not possible using earlier (singlebeam) seabed 
mapping techniques. These high-resolution data will enable a better understanding of east coast marine 
habitats whilst contributing to improved spatial management of areas within and around the uThukela Banks 
Marine Protected Area.

Introduction
Marine spatial planning (MSP) is a process currently being employed on a global scale towards efficient 
management of the ocean space, and therefore the blue economy1,2 (i.e. sustainable exploitation, preservation and 
regeneration of the marine environment) and addressing the needs of growing global populations (e.g. Operation 
Phakisa2-4). Globally5-12 and locally, the introduction of an ecosystem-based MSP process towards management of 
the marine space is well supported.4,13,14 The decision-making process is guided by the quality of data on which 
it is based. At present, about 75 countries that have marine borders on all major oceans have commenced with 
MSP initiatives.15 Some of these countries (such as China16, Canada17,18, the United States of America’s California 
mapping programme19, Ireland20 and Australia21) have actively applied improved technology22,23 (e.g. multibeam 
echo-sounders/MBES) in benthic habitat mapping, which has led to effective MSP results. A case study from 
the long-established Irish programme INFOMAR (integrated mapping for the sustainable development of Ireland’s 
marine resource) showed investment benefits of seabed mapping initiative across all marine sectors to be 4–6-fold 
compared to the initial capital investment.24 In South Africa, the development of an MSP framework began in 20159, 
identifying spatial plans encompassed by the country’s exclusive economic zone (EEZ). This enabled South Africa 
to take the lead over other African countries by being the first to have the Department of Environmental Affairs (now 
known as the Department of Forestry, Fisheries and the Environment) draft an MSP legislation in 2017.4,13,25 The 
draft was later approved by the government as Act No. 16 of 2018.14

Globally, there is a drive to protect the ocean’s biodiversity and/or ecosystems26-28; however, only 9% of the world’s 
seabed has been mapped to resolutions at an appropriate scale for MSP and management29,30. Marine protected 
areas (MPAs) are a significant component of the South African MSP process, and receive an elevated status and 
restricted use based on their valuable environmental products and services.31 There are 41 MPAs (total area 5.4%) 
within South Africa’s EEZ32, defined on ecosystem conservation and/or socio-economic objectives, but only a 
fraction of these MPAs are associated with the high-resolution geospatial context provided by MBES data (e.g. 
Protea Banks MPA33, the uThukela MPA34 and Cape Canyon MPA35). The management, protection and monitoring 
of the oceanic resources and services that are not holistically understood pose significant challenges (e.g. lacking 
the contribution of the abiotic factors, such as the seabed geomorphology, in an attempt to understand the declining 
continental shelf biodiversity).

Marine habitat and resource mapping has become a global prerequisite for spatial management of the ocean’s 
resources and services.36,37 The availability of high-resolution bathymetric data has increased modelling capabilities 
in marine science.18,30,38-42 However, MBES data are only one component (although an important one) of benthic habitat 
mapping, which requires various inputs (e.g. seabed imagery, sediment samples, backscatter and bathymetry). 
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MBESs have rapidly become the preferred hydroacoustic surveying 
technique in marine habitat mapping for its capability to simultaneously 
and reliably obtain bathymetry and backscatter data.30,37,42,43 MBESs 
form the foundation for the Seabed 2030 initiative44 (which aims at 
completely assimilating data and mapping the world’s seabed by 2030). 
This technique uses sound to collect hundreds of thousands to millions 
of georeferenced depth soundings which are processed to create a 3D 
digital terrain model of the surveyed area. Hence, MBES data capture 
high spatial resolution imagery of the seabed’s geomorphology45 which 
is used to characterise marine habitats in terms of their georeferenced 
location, spatial extent and geomorphological characteristics38. In South 
Africa, the most recent of these interdisciplinary research projects was 
carried out in the Western Cape by Pillay et al.42, who applied machine 
learning and algorithms to seabed classification.

Benthic habitat mapping is recognised as a need to be expanded upon 
in South Africa41, because the continental shelf bathymetry has been 
previously recognised to be poorly resolved40. One of the benthic habitats 
recognised globally for the multitude of coastal goods and services 
it offers is reefs46 (i.e. outcropping rock on the seabed), which form 
the primary focus presented in the case study here. Reefs host diverse 
marine ecosystems47 and surveying reefs with MBES in South Africa is 
anticipated to improve the understanding of their functioning, besides 
supporting multiple resource management objectives (e.g. delineating 
MPAs)41,45. Seabed characteristics (e.g. depth, rugosity and substrate) 
and their interaction with the local oceanographic conditions form the 
building blocks that contribute to the functioning of marine ecosystems 
and structure of benthic guild (habitat provision) at regional spatial 
scales.30,42,48 In this paper, we aim to (1) highlight the gaps in allocating 
spatially restrictive boundaries without high-resolution hydroacoustic 
mapping within South Africa’s EEZ, especially in areas demarcated as 
MPAs, (2) provide a link between geology, biological and oceanographic 
space utilising high-resolution bathymetry data, and (3) present initial 
results from a case study of a selected site from the uThukela MPA ACEP 
(African Coelacanth Ecosystem Programme) Smart Zones Project.

Multibeam echo-sounders and benthic  
habitat mapping
Within the South African context, there is increased interest in 
developing enhanced high-resolution seabed models.42 Recent marine 
geological mapping and marine research41,42 have presented a strong 
case for the possible role of MBES data in the realm of benthic 
habitat mapping.18,21,38 MBES provides the baseline data (bathymetry, 
backscatter, slope, etc.) from which the seabed and habitat maps can 
be derived and interpreted in conjunction with ground-truth data20, thus 
providing a detailed bathymetric surface which can in turn be used for 
planning and decision-making. In addition, backscatter intensity data 
provide an indication of seabed character (cf. Montereale-Gavazzi et 
al.49), discerning between sediment classes and consolidated seabed. 
The system frequencies are optimised for specific depth ranges and 
must be employed accordingly.36,37,43,50,51 MBES data can be processed 
to produce dataset derivatives (e.g. rugosity, slope, bathymetric position 
index and aspect maps), which offer enhanced and detailed properties 
of the substrate known to influence benthic diversity. Marine mapping 
efforts have begun to match in data quality and resolution those of 
the terrestrial realm18, and therefore are as informative as terrestrial 
topographic observations.

Methods
For this study, sites between Durban and Richards Bay were selected 
for MBES mapping based on (1) features identified on low-resolution 
regional datasets40,52 (and references therein) (2) being known 
recreational fishing areas (likely reefs) and (3) their location relative to 
the uThukela MPA management zones. Hydroacoustic surveys were 
carried out on the reefs and their adjacent areas in the 40–100  m 
depth zones, depending on site location. The Geophysics and Mapping 
Platform (GeMaP) provided by ACEP was used to acquire MBES data. 
The platform’s Seabat Reson 7101 MBES and SBG systems (Navsight 
Apogee inertial navigation system) were used during data collection, 
whilst maintaining on average a ±10% overlap between the adjacent 

survey lines to increase data integrity at the swath edges. Sound velocity 
profiles were collected periodically throughout the day, monitored 
at <3 m/s difference between the profile velocity from the live sound 
velocity. Raw data were processed using HYPACK (2022) and Qinertia 
(v. 3.0.5966) to produce gridded (3 m cells) digital terrain models of the 
seabed. Golden Software Surfer (v. 23.3.202) and ESRI ArcMap 10.1 
were used to visualise and interpret data and derivatives.

Case study: The uThukela Banks Marine 
Protected Area
The uThukela Banks MPA (5666 km2; Figure 1) proclaimed in 201932 is 
situated on South Africa’s wave-dominated53 east coast continental shelf. 
This MPA is subdivided into zones with varying degrees of accessibility 
and/or protection from human pressure54 (Figure 1) to regulate the 
declining continental shelf biodiversity55. The uThukela River terrestrial 
sediments and associated offshore unconsolidated material deposits 
have actively shaped the eastern KwaZulu-Natal (KZN) continental 
shelf since the break-up of Gondwana.56 Further details of the shelf 
stratigraphy of the area have been documented by Hicks and Green57 
(and references therein). This MPA has not received much attention 
in terms of high-resolution MBES mapping despite encompassing an 
extensive subaqueous delta58,59 and multiple reef complexes noted for 
high biodiversity52. Green et al.34 recently carried out an extensive MBES 
survey, providing new insights into higher-resolved geomorphology 
within the uThukela Banks MPA. This extensive survey showed the value 
of incorporating geological data into informing MPA management (and 
therefore, MSP). Prior to this, low-resolution bathymetry and regional 
sedimentary facies had been described from the region in 2007.58 A 
study in 201252 developed a systematic framework for assessment of 
biodiversity and marine biodiversity protection for KZN by recognising 
spatial priorities for sustainable conservation efforts (formerly known 
as the SeaPLAN project). However, this was based on relatively low-
resolution bathymetry data in which the geomorphology is poorly 
resolved. The singlebeam echosounder (SBES) mapping efforts of De 
Wet and Compton40 (published in 2021) do span the uThukela MPA, 
but only contribute low-resolution and less-detailed bathymetry. To date, 
through the ACEP Smart Zones Project (unpublished data), 13 of 14 
selected sites have been surveyed with MBES at an average coverage 
of 17 km2 per site, providing ca. 230 km2 of new MBES data over key 
localities within and adjacent to the uThukela MPA (Figure 1).

Results
With this case study, we focus on one of the surveyed ACEP Smart 
Zones MPA Project sites (at 40–70  m depth range; Figure 2) which 
shows a locally steeply inclined (13°) seaward slope. Compared to the 
SBES dataset (Inset A; Figure 2)40, we note that the new (MBES) data 
allow a precise distinction between sediment-starved areas from those 
adjacent zones (i.e. either rich in sediments and/or featureless seabed), 
and between different types of outcrop morphology. Areas adjacent to 
the outcrop likely represent unconsolidated sediments described by flat-
lying sediments and bedforms. These large superimposed subaqueous 
dunes form discontinuous fields along the mid-shelf (Inset B; Figure 2). 
The sediment-starved areas are characterised by exposed reef. Reef 
geomorphology is variable with rugged reef pinnacles and ridges bordered 
by low-relief reefs fringed by adjacent relatively flat and/or featureless 
seabed. The reefs are commonly oriented approximately coast-parallel 
on the inner- to mid-shelf, representing submerged shorelines.33,59 Abrupt 
changes in depth of the seabed, as observed on the outer edges of the 
reefs (Figure 2), are recognised as prominent zones of overstepped 
submerged shorelines.33,59

Discussion
Application of MBES to substrate analysis
The data example provided here underscores the distribution of reef 
and adjacent sediments (and/or featureless seabed) at this survey site. 
Reefs play an integral role in marine habitats as they are biodiversity 
hotspots on the continental shelf (e.g. Caribbean nations reefs60) and 
are vulnerable to both anthropogenic and natural impacts.61 Thus 
reefs and organisms that inhabit them benefit from proclamation 
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of these localities as MPAs. Duran et al.62 previously reported that 
understanding the temporal and spatial variation of reef communities is 
of critical importance to monitoring stressors on health and ecosystem 
functioning (e.g. fishing63) and global stressors (e.g. climate change64). 
The high-relief reef (less vulnerable to inundation by sediments) could 
provide stable habitat for long-term inhabitants, whereas the low-relief 
reef (including the high-relief reef edges) preferentially hosts short-
term inhabitants as it is more vulnerable to burial by the dynamic 
sediments (cf. Harman et al.65). The interaction of the high-relief reef 
with the localised dynamic system induces turbulence, promoting the 
growth and density of substrate attached organisms66, and  therefore, 
creating accommodation for biodiversity abundance65. This, therefore, 
emphasises how the seabed geomorphology is the fundamental building 
block to the systems that exist on and/or above its surface.42,48 The 
uThukela MPA case study demonstrates improved resolution detail of the 
reef in the dataset (Figure 2), which was previously not well represented 
from the lower-resolution datasets.40 Within the sediment-rich regions, 

the presence of bedforms marks a clear indication of current-driven 
sediment transport on the seabed, which will be further investigated in 
more detail at a later stage. Bedforms and their sediment dynamics have 
been studied from northern to southern KZN67 and are mostly considered 
the result of the poleward-flowing geostrophic Agulhas Current33. These 
adjacent sediment-rich regions play a role in the broader ecosystem and 
habitat provision.68

MBES contribution towards MSP
The improvements made to raw and primary data quality (reliability) 
impact the country’s MSP process and decision-making outcomes 
positively.69 MBES can be used for both short- and long-term monitoring 
of dynamic seabed sediment processes.39 This is vital in monitoring 
the spatial and temporal habitat-use compatibility, a potentially valuable 
contribution towards decision-making in regions of conflicting spatial 
interests between economic drivers. Through its use in monitoring 
the low-relief reef and its inhabitants, MBES data will prove critical, 

Figure 1:	 Selected survey sites and their location relative to the uThukela Marine Protected Area (MPA) zones. Note: the mapped (unpublished) areas 
within the selected site blocks are highlighted.
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as reef resilience requires withstanding press and/or pulse types of 
sedimentation (including in situ sedimentation) disturbances.70 The 
MBES data and its derivatives enable detailed seabed geomorphology 
to be modelled. The rugged geomorphological character of reefs could 
likely provide several biological niches for varying ecosystems.38

Gaps in current South African MSP in relation to 
geoscientific research
Recent global initiatives (e.g. the National Development Plan 2030 
goals44) have encouraged a dedicated focus to elevate the significance of 
seabed mapping. Although detailed high-resolution data do exist, much 
of these data remain locked under commercial and military embargo, 
without public access. Restricted access to existing commercial data 
is acknowledged globally as a significant challenge.71 High-resolution 
mapping within South African MSP and therefore the ability to quantify 
the contribution of seabed type and characteristics in ocean system 
functions is scarce. Of the 41 MPAs within South Africa’s EEZ, none 
is covered entirely by MBES data, with relatively limited (or focused) 
coverage where data do exist (e.g. uThukela MPA34). However, 
demarcation based on rich biodiversity, even without marine geological 
context, is testament to the work of researchers from marine sub-
disciplines (biological and physical oceanography), with qualitatively 
described marine habitats in the literature (cf. trait-based assessment 
by Ortega-Cineros et al.72). To date, our knowledge (from MBES) of 
the structural properties of the uThukela Banks MPA seabed is limited 
(e.g. focused multibeam bathymetry34). Given that South Africa’s MSP 
management framework is still in its early years of implementation, 
the current framework is likely subject to revision and fine-tuning 
for application in future marine spatial plans. The globally endorsed 

ecosystem-based MSP for management of the ocean space itself has 
often been problematic to translate into operational management and 
further enhance work already done in MSP.73

Reflections on the future direction of MSP from a 
geoscience perspective in South Africa
The growing world population, if left unchecked, threatens the 
replenishment and sustainability of marine natural resources.2 There 
is no better time to initiate planning for probable future conflicts than 
the present.74 It is critically important for South Africa to aim for growth 
towards effective marine spatial plans. Tasks suggested for future 
consideration include an expansion of mapping the seabed and defining 
habitat through this mapping to cover (most broadly) South Africa’s 
EEZ. Closer collaboration between government departments, research 
organisations and the private sector could be fostered to achieve an 
integrated goal (of multi-functional marine data), from the available 
national budget. The MSP process is rapid, output-oriented, and in 
many instances authority-driven (by various sectors), on a set budget 
and reliant on the quality of data input.12,75 These factors are anticipated 
to significantly contribute to heterogeneous approved, implemented and 
developed MSP initiatives. Improvements to the baseline primary data 
will ensure that these heterogeneous initiatives stem from detailed maps 
for ocean use and management (through the allocation of meaningful 
spatial boundaries).

Ehler76 proposed that by the year 2030, a third of the world’s EEZs will 
be covered by government-approved marine spatial plans. The mapping 
of South African marine geomorphology and habitats by MBES would 
contribute substantially to the goals of the National Development Plan 

Figure 2:	 Hydroacoustic surveys of a target area within the uThukela Banks Marine Protected Area. Inset A: Previously available low-resolution bathymetry 
data37 (modified). Inset B: Higher-resolved seabed bathymetry from the on-going ACEP Smart Zones Project, offshore Zinkwazi.
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203044 and global alignment (e.g. United Nations Sustainable Development 
Goals). In addition, it will contribute foundational knowledge as well as 
health monitoring systems within MSP77 for interested sectors. There is 
no best single method to perform strategic spatial planning78, and thus 
a variety of techniques and data sources are required. Hydroacoustic 
surveys are not without their challenges; equipment, including a 
suitable vessel, and software are costly, complex and require specialist 
installation and operation. Surveys are time consuming and are subject 
to suitable weather conditions. Hence, projects need to have appropriate 
budgets, personnel (scarce skills in South Africa) and time to generate 
bathymetric products (Phase 1) before any complementary fieldwork 
(Phase 2). Phase 2 efforts (baited remote underwater video, remotely 
operated vehicles, sediment grabs, benthic sleds, etc.) would not only 
benefit in terms of site selection and sampling design using a digital 
terrain model and derivatives (rugosity) but also from the geospatial 
context of the larger study area. The ACEP-supported SMART ZONES 
MPA Project has been initiated to achieve this on a small scale, with 
mapping activities taking place across strategic reef sites within and 
adjacent to the uThukela MPA, followed by biological, oceanographic and 
remote-imagery sampling campaigns. For this project, the GeMaP based 
in KZN will provide access to high-resolution bathymetric mapping tools 
and vessels to collect essential bathymetry data, upon which biological 
and oceanographic sampling and modelling will be based.

Conclusion
Seabed composition and substrate structure have a significant impact on 
marine biological and oceanographic systems42,67, ranging from the role 
of a specific ecological niche to the general marine habitat describing a 
particular biome. This contribution demonstrates the effectiveness of using 
MBES in hydroacoustic surveys, where seabed features are resolved in 
much greater detail and accuracy whilst revealing new features and seabed 
interactions in higher detail than previously available techniques could 
achieve. Therefore, South African researchers, MSP practitioners and the 
government will greatly benefit in making better decisions when planning, 
monitoring and protecting such MPAs. Our case study shows the level of 
detail that can be achieved by mapping reef habitat and adjacent areas. 
Technological improvements of MBES are anticipated to greatly benefit 
South Africa’s marine management sector.

Hydroacoustic and bathymetric surveys are well known in marine 
geosciences; however, increased exposure to broader elements of 
marine science in general is encouraged to allow meaningful integration 
and holistic knowledge generation. Such integration is essential for MSP, 
providing multi-functionality and data integrity.79 The surveys carried 
out in the uThukela MPA and neighbouring sites serve to highlight 
the insufficient detail in our knowledge of the present-day seabed 
bathymetry. These surveys provide a preview of the value MBES will 
add (including cross-discipline collaboration future developments) for 
the South African government and marine research practitioners within 
the EEZ. This will assist in the further progression of work already done 
in MSP, provided the required skillset and funds are available.
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