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An important topic for retirees is determining how much they can safely withdraw from their retirement 
savings: draw too much from their retirement fund and risk outliving their retirement savings, or draw 
too little and live below their means. For retirees to decide on the appropriate withdrawal rate, retirees 
need to have the tools available to decide on their spending rates. There are many factors that influence 
withdrawal rates, such as initial wealth, asset allocations, age, life expectancy, and risk tolerances. The 
topic of safe withdrawal rates aims to optimise spending rates while minimising the risk of running out 
of retirement savings. The focus of this study was on using forward-looking moments of the risk-neutral 
and real-world asset distributions in determining safe withdrawal rates for South African retirees. The use 
of forward-looking information, typically derived from traded derivative securities (rather than historical 
data), is essential in optimising safe withdrawal rates for retirees. In particular, we extracted the forward-
looking risk-neutral and real-world distributions from option prices on the South African Top 40 index, 
and used the moments of the distributions as a signal in a simple tactical asset allocation framework. 
That is, when we expect the growth asset to decrease in value, we hold cash (or short the asset) and, 
alternatively, when we expect the growth asset to increase in value, we hold the growth asset for the 
period. Using this approach, we found that we can sustain withdrawal rates of up to 7% compared to the 
commonly quoted 4% safe withdrawal rate obtained by historical simulations.

Significance:
•	 Through this paper, we aim to create further awareness on safe retirement spending rates. It is important 

that retirees are guided through this process with the correct knowledge of the risk and return of 
asset classes.

•	 Using forward-looking information allows for a more realistic modelling of portfolio returns, which allows 
for the possibility of better modelling of safe withdrawal rates. 

•	 We show that using the moments of the forward-looking distributions in a simple tactical asset allocation 
framework yielded superior portfolio returns to a fixed asset allocation structure.

Introduction
Studies on safe retirement spending rates typically draw information from historical data.1-5 A prime example of 
such a study is the commonly quoted ‘4% safe withdrawal rate’ published in Cooley et al.1, where the authors used 
historical data over the period 1926 to 1995 to assess safe spending rates for retirees. The assumptions made in 
these studies are that the statistical properties of historical returns remain stable over time. However, it is known 
that historical (backward-looking) returns do not necessary predict future returns. Furthermore, in these studies, 
the authors assume a fixed asset allocation and a constant spending rate. Both assumptions are heavily criticised 
in the literature.5-7 People nowadays are living longer and face a further 20 to 30 years of life with substantial 
probability after retirement.8-10 Van Appel et al.5 demonstrated in an empirical study, using historical data, that 
for higher spending rates, a higher allocation in growth assets is needed. Even then, the portfolio is unlikely to 
be successful over a 30-year period (representing a typical post-retirement investment cycle). Ideally, a retiree 
would like to draw as much as possible, with a low probability of depleting the fund before their duration of life, or 
30 years.

An important part of modelling is to generate scenarios for financial practitioners. In particular, it is important 
that these scenarios are as close as possible to the true representation of what could happen. In extension of the 
work presented by Cooley et al.1,2, Bengen3, and Maré4, the focus of this study was to improve the modelling of 
safe retirement spending rates by using forward-looking information rather than historical information. Many large 
financial institutions regularly estimate forward-looking distributions from option prices in order to gain insights 
into the weights investors place on different future asset prices.11,12 Therefore, modelling retirement withdrawal 
rates using forward-looking information should provide a more realistic assessment of safe withdrawal rates. The 
main advantage of using forward-looking information is that it allows for the implementation of a tactical asset 
allocation framework instead of a fixed asset allocation structure that is used in the literature. This allows the 
portfolio to potentially achieve higher asset returns, which increases the success rates of retirement portfolios. In 
particular, we would like to be invested in the risky (or growth) asset when the return is expected to be favourable 
to the portfolio. To assess when returns will be favourable, forward-looking information should be used rather 
than historical data. We thereby show that models based on historical data do not provide a true representation of 
modelling retirement portfolio success rates optimally. 

Methodology
Typically, safe retirement withdrawal rates are analysed by using models based on historical data and Monte Carlo 
simulation.1-6,13,14 In particular, Scott13 studied the impact that a portfolio’s rate of return has on safe withdrawal 
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rates, and found that increasing the rate of return, by increasing the 
equity allocation, in the retirement portfolio drastically increases safe 
withdrawal rates. However, this comes with higher variability in returns 
(or risk).5 Therefore, the aim of this section is to use forward-looking 
information in a tactical asset allocation framework to maximise portfolio 
returns and reduce the variability in returns.

Extracting forward-looking return distributions
A European-style call option is a contract that gives the holder the right 
(but not the obligation) to purchase a prescribed asset from the writer, 
for a prescribed price at a prescribed time, in the future. The price of 
the contract is determined by its expected future pay-off, under the risk-
neutral measure, discounted by the risk-free interest rate:

	 Equation 1

where T denotes the time to expiry (tenor), K the predetermined asset 
price (strike price), r the risk-free interest rate, ST the asset price at expiry 
and  the risk-neutral probability density function of the future 
asset price. These options are typically traded on a number of official 
exchanges. Because the option pay-off extends out in time, option prices 
capture some market sentiment.15-20 This is known as forward-looking 
information.

The forward-looking risk-neutral probability density function, , is 
easily extracted from market option prices by taking the second partial 
derivative with respect to the strike of a European call option as follows 
(see, Breeden and Litzenberger21):

	 Equation 2

However, option price data are normally sparse and noisy, especially 
in South Africa. Therefore, to estimate the forward-looking risk-neutral 
density function in Equation 2, one typically first needs to interpolate and 
extrapolate call option prices over a dense strike range.22-25 It is practically 
more desirable to interpolate and extrapolate over the implied volatilities 
rather than the call option prices, where the implied volatilities can be 
obtained by the Black–Scholes option pricing formula.18 That is, the 
Black–Scholes option pricing formula is simply used to move between 
prices and implied volatilities. In this paper, we used the stochastic 
volatility inspired model, proposed by Gatheral24, to interpolate and 
extrapolate the implied volatility over a 50–150% moneyness range25. 
Thereafter, we numerically approximated the risk-neutral distribution by 
taking the second difference along the interpolate and extrapolate call 
option price at tenor T.11,18,26

Consequently, the moments of the distribution have become powerful 
in analysing and forecasting future returns.15,18,27 The risk-neutral 
distribution differs from the real-world distribution in that the risk-neutral 
distribution’s expected return is the risk-free rate as investors are risk-
neutral under this measure. However, investors are typically risk-averse 
and therefore require a premium for taking on the risk. That is, the 
risk-neutral measure is the real-world measure with the risk premium 
removed. For forecasting future asset returns, the real-world measure is, 
therefore, preferred.12,28 The risk premium is not directly observed and, 
therefore, obtaining the real-world measure normally involves additional 
assumptions on a utility function of terminal wealth and using historical 
data.18,29-31

Recently, Ross32 proposed the recovery theorem, which is an alternative 
method of extracting a real-world distribution from the risk-neutral matrix 
of a Markovian state variable, i.e.:

	 Equation 3

where t represents the option tenor. In this study, we numerically 
discretise Equation 3 over n=51 return states, in total spanning the 
moneyness range 50–150%, which is placed every 2% symmetrically 
around the moneyness of 100% to obtain the (m x n) state price matrix, 
S.32 This is done by numerically integrating Equation 3 over the discrete 

grid for each of the 51 states.33 In essence, the discretised S(t,n) 
represents the price of an Arrow–Debreu security that agrees to pay one 
unit of currency if state j is reached at time t and zero in all other states. 

In contrast, the recovery theorem does not make use of historical 
returns, but rather makes assumptions about market restrictions.32 
This makes the recovery theorem a desirable candidate for extracting 
the real-world probabilities, particularly for new assets on the market, 
where large historical data sets do not exist. Under the assumption that 
transition state prices are time-homogeneous, the transition probability, 
Pi,j), of moving from state i to state j in one period is given as:

	 Equation 4

which can be estimated by solving the linear system of equations (see, 
for example, Ross32, Audrino et al.15, Van Appel and Maré25):

	 Equation 5

where P denotes the one-period risk-neutral transition probability matrix. 
Intuitively, P represents the richer set of probabilities of moving from 
all hypothetical initial states to all hypothetical future states, where 
Equation 3 only represents the probabilities of moving from the single 
known current state to all future states.34 Assuming no arbitrage, 
irreducibility of the transition matrix P, and that the pricing matrix 
is generated by a transition independent kernel, then under Ross’s 
framework there exists a unique positive pricing kernel defined as the 
ratio price per unit probability:

	 Equation 6

where  represents the pricing kernel, and  the real-world transition 
probability of moving from state  to state  in one period. In essence, 
Ross32 then estimates the two unknowns, namely the real-world 
probabilities and pricing kernel in Equation 6 using the Perron–Frobenius 
theorem.

To test the usability and practicality of the real-world distribution obtained 
by the recovery theorem in determining safe withdrawal rates, we next 
use the forward-looking forecasted moments in a simple tactical asset 
allocation framework to obtain higher returns than a model based purely 
on historical data with a fixed asset allocation. Furthermore, we also 
consider a hedging strategy by buying and selling put and call options, 
respectively.

Tactical asset allocation
In this section, we use the extracted forward-looking risk-neutral and 
real-world return distributions to forecast movements in the underlying 
asset returns. We extracted the forward-looking risk-neutral and real-
world distributions, at the start of each month, from market-observed 
option prices quoted on the FTSE/JSE Top 40 index (Top40) over the 
period August 1996 to January 2018 (sourced from the South African 
FTSE/JSE), giving a total of 259 forecast months (or 259 one-month 
forecast distributions). The Top40 index was used as it is a key market 
factor in South Africa and, along with the exchange-traded derivatives 
on this asset, is one of the most liquid in the South African market. 
Furthermore, the duration of the sample (i.e. 21.5 years) would typically 
embrace at least three South African business cycles.35 Thereafter, we 
use the extracted risk-neutral and real-world moments in a simple tactical 
asset allocation framework to obtain higher returns for the portfolio. 

Investors are normally in search of higher returns, skewness and 
kurtosis, and lower volatility. Therefore, as outlined in Audrino et al.15 and 
Flint and Maré16, we carried out a simple tactical asset allocation, where 
we hold the Top40 for the full month when the forecasted moments 
(mean, skewness, and kurtosis) are higher than the previous month’s 
forecast, or when the forecasted volatility is lower than the previous 
month’s forecast. Because trading occurs once a month, there are a 
limited number of trades, resulting in negligible transactional costs 
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(transactional costs are normally around 2 basis points). In particular, 
we found that trading costs decreased yearly returns on average by no 
more than 0.2%. For completeness, all results based on the tactical asset 
allocation framework reported in this paper include transaction costs.

Lastly, we also considered a fixed asset allocation framework by 
incorporating a hedging strategy, where instead of selling the Top40 in 
the tactical asset allocation framework, we protect the portfolio against 
large losses by buying put options. This strategy involves purchasing 
put options with 6% out the money (OTM) strike with a 30% participation 
rate. Because put options are expensive, we offset the cost by selling 
call options with 1% OTM strike with a 30% participation rate. Because 
we use observed market-quoted prices, these parameter values were 
chosen to yield stable and desirable results. That is, our index portfolio 
value evolves as follows:

	 Equation 7

where π(t) represents the portfolio value at time t, p(.) represents the 
participation rates, M(.) the moneyness rate, Rt the asset return, and 
P(t,M(put)) the market-quoted put option price.

The cumulative portfolio value over the period August 1996 to January 
2018 for the simple tactical asset allocation framework using the 
moments of the risk-neutral and real-world distributions is shown 
in Figure 1a and Figure 1b, respectively, if one unit of currency was 
invested in the Top40 in August 1996.

Figure 1:	 Tactical asset allocation with withdrawals returns using (a) the 
risk-neutral moments vs the Top 40 index returns and (b) the 
real-world moments vs the Top 40 index returns.

Figure 1a shows the portfolio using the forecasted risk-neutral volatility 
in returns as the signal in the tactical asset allocation framework yielded 
the best results. The trading strategy using the risk-neutral kurtosis also 
outperformed the Top40, while the trading strategy using the risk-neutral 
mean return yielded similar results to the Top40. The skewness yielded 
similar results to around 2005, but thereafter yielded poor results. In 
Figure 1b, the real-world skewness in the simple tactical asset allocation 
framework yielded the best results, while the volatility and mean yielded 

similar returns to the Top40, and the kurtosis yielded poor results. 
Furthermore, Figure 1 shows that the tactical asset allocation based 
on the real-world skewness significantly outperformed the risk-neutral 
moments. In both the risk-neutral and real-world settings, the hedging 
strategy (with a fixed asset allocation as described above) involving the 
buying and selling of put and call options did not perform as well as the 
simple tactical asset allocation method. However, the hedging strategy 
did outperform the Top40 throughout the duration of the study.

In Table 1, we show some descriptive statistics of the annualised returns 
using the volatility in the risk-neutral tactical asset allocation framework 
(RND), and the skewness in the real-world tactical asset allocation 
framework (RW). We also consider the tactical asset allocation of 
combining both signals from the risk-neutral volatility and real-world 
skewness (RW & RND). That is, we hold the asset when the forecasted 
risk-neutral volatility is lower than the previous month’s forecast and 
the forecasted real-world skewness is higher than the previous month’s 
forecast. The hedging strategy, based on the risk-neutral volatility (RND 
Hedge) and real-world skewness (RW Hedge), is also shown in Table 1.

Table 1:	 Descriptive statistics

  Mean Volatility Sharpe ratio Skewness Kurtosis

Top 40 13.62% 19.90% 0.23 -0.28 5.75

RND 14.85% 14.63% 0.40 0.62 8.23

RW 17.13% 13.01% 0.63 0.39 6.16

RW & RND 15.73% 8.74% 0.77 2.35 12.79

RND Hedge 13.86% 18.32% 0.27 -0.03 5.02

RW Hedge 14.12% 17.89% 0.29 -0.16 4.25

The tactical asset allocation strategy involving the real-world skewness 
yielded the highest mean return over the sample period with a low 
variation in returns. The strategy involving the combination of the real-
world and risk-neutral moments yielded the lowest variation in returns 
with a high expected return over our sample period. Low variation in 
returns, in conjunction with high expected returns, is obviously a 
desirable property for investment managers.

In Table 2, we show the number of trades carried out in each tactical 
asset allocation strategy shown in Table 1 over the total of 259 forecast 
months (or 21.5 years). 

Table 2:	 Number of trades

  RND Vol RW Skew RND Vol & RW Skew

Number of trades 139 167 111

In the next section, we examine safe withdrawal rates in a forward-
looking environment using the tactical asset allocation framework.

Results
In this section, we assume that a person retired on 1 August 1996 
with one unit in retirement savings. The retiree needs to decide how 
much to withdraw from the retirement fund; draw too much and carry 
the risk of running out of money, or draw too little and carry the risk 
of a compromised living standard. Therefore, in this section, we study 
the life expectancy of a basic retirement portfolio with three commonly 
used withdrawal rates used in the literature, namely 5%, 7%, and 10% 
per year of the initial portfolio size. Furthermore, these withdrawals will 
be adjusted monthly according to inflation rates and historical cash 
returns – which have been sourced form Firer and McLeod36, Firer and 
Staunton37, and I-Net – are used in the portfolio.

https://doi.org/10.17159/sajs.2022/11933


4

	 Determining safe withdrawal rates
	 Page 4 of 7

Volume 118| Number 3/4 
March/April 2022

Research Article
https://doi.org/10.17159/sajs.2022/11933

Safe withdrawal rates
In Figures 2, 3, and 4, we clearly see that the tactical asset allocation 
framework using the moments obtained from the forward-looking 
distributions outperformed the fixed asset allocation for the duration of 
the period under study. Figure 2 shows the accumulated portfolio value 
for two different asset allocations (see Figures 2a and 2b), with the risk-
neutral volatility used in the tactical asset allocation framework described 
in the section above. Similarly, Figures 3 and 4 show the accumulated 
portfolio values using the real-world skewness and the combination of 
the real-world skewness and risk-neutral volatility in the tactical asset 

	
(a) 100% Equity	 (b) 50% Equity, 50% Cash

Figure 2:	 The accumulated portfolio value for a fixed asset allocation vs the risk-neutral tactical asset allocation (RND TAA) framework with withdrawal rates 
of {5%, 7%, 10%} returns.

	
(a) 100% Equity	 (b) 50% Equity, 50% Cash

Figure 3:	 The accumulated portfolio value for a fixed asset allocation vs the real-world tactical asset allocation (RW TAA) framework with withdrawal rates of 
{5%, 7%, 10%} returns.

allocation framework, respectively. Combining the signal from the risk-
neutral volatility and the real-world skewness yielded superior fund 
prospects for higher withdrawal rates (Figure 4). Although this strategy 
does not yield the highest mean return over the sample period (Table 1), 
it has the least variation in returns. Scott et al.6 and Waring and Siegel7 
criticised the notion of withdrawing a fixed real amount from an inherently 
volatile portfolio. This is known as sequence risk. Therefore, reducing 
the variation in returns is vitally important in determining safe retirement 
withdrawal rates. This is particularly evident in Figure 4, where a high 
withdrawal rate of 10% yielded higher portfolio prospects than using 
only the real-world skewness. 

https://doi.org/10.17159/sajs.2022/11933
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(a) 100% Equity	 (b) 50% Equity, 50% Cash

Figure 4:	 The accumulated portfolio value for a fixed asset allocation vs the real-world and risk-neutral tactical asset allocation (RW & RND TAA) framework 
with withdrawal rates of {5%, 7%, 10%} returns.

Next, we assess the robustness of the tactical asset allocation 
framework in determining safe retirement withdrawal rates. In particular, 
the robust analysis is carried out to determine how much, if any, of the 
improvement above the commonly quoted 4% safe withdrawal rate is 
attributed to using forward-looking information, rather than the different 
market or time periods used in this study.

Robust analysis
To assess the robustness of the forward-looking distributions in modelling 
safe withdrawal rates, we carried out a random sampling study. We 
randomly selected, with replacement, a month from the sample period 
and used the equity, bonds, and cash returns to generate a one-month 
sample path. In the tactical asset allocation framework, we also used 
the previous month’s forecasted moments of the randomly selected 

month to determine the portfolio asset allocation. We then continued 
to randomly sample from the period to simulate a 30-year period. We, 
therefore, simulated the evolution of the portfolio over a 30‑year period 
and constructed 10 000 such sample paths. This approach maintains 
the correlation structure between the assets, as we are using the true 
observed returns for the selected month for all assets. In Table 3, we 
show the success rates based on the fixed asset allocation versus the 
tactical asset allocation framework using the real-world skewness. We 
found similar results in our sample to the commonly quoted 4% safe 
withdrawal rate using historical (backward-looking) returns. However, 
by using forward-looking information in a tactical asset allocation 
framework, we were able to show significantly improved safe withdrawal 
rates. Table 4 shows the fugit of the retirement portfolio. In this study, 
the fugit is defined as the expected duration of the portfolio given that the 
portfolio fails before the predefined 30-year duration.

Table 3:	 Success rates

  Withdrawal rate

Asset allocation 4% 5% 6% 7% 8% 9% 10%

Fixed asset allocation

100% Stocks 79% 66% 52% 40% 30% 21% 14%

75% Stocks / 25% Bonds 89% 77% 61% 45% 32% 20% 13%

50% Stocks / 50% Bonds 96% 86% 70% 50% 31% 18% 10%

25% Stocks / 75% Bonds 99% 92% 76% 54% 29% 13% 5%

Real-world tactical asset allocation

100% Stocks 100% 98% 95% 86% 72% 59% 41%

75% Stocks / 25% Bonds 100% 99% 96% 87% 71% 52% 31%

50% Stocks / 50% Bonds 100% 100% 97% 85% 63% 37% 17%

25% Stocks / 75% Bonds 100% 99% 93% 73% 44% 19% 6%

https://doi.org/10.17159/sajs.2022/11933
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Table 4:	 Fugit

  Withdrawal rate

Asset allocation 4% 5% 6% 7% 8% 9% 10%

Fixed asset allocation

100% Stocks 256 239 223 207 193 178 165

75% Stocks / 25% Bonds 276 259 243 226 210 190 175

50% Stocks / 50% Bonds 296 281 262 247 226 204 184

25% Stocks / 75% Bonds 308 297 281 263 240 213 188

Real-world tactical asset allocation

100% Stocks 294 283 268 257 242 226 208

75% Stocks / 25% Bonds 322 308 296 276 258 239 218

50% Stocks / 50% Bonds 272 313 304 288 268 245 217

25% Stocks / 75% Bonds 340 314 303 285 262 235 205

It is evident from Table 3 and Table 4 that the simple tactical asset 
allocation framework, using the forward-looking real-world skewness, 
yielded superior success and fugit rates to the strategy that involved 
the fixed asset allocation. As the tactical asset allocation is based on 
either holding, or selling, the growth asset for a one-month period, the 
strategy is most prominent with a large growth asset allocation. These 
results illustrate that one can possibly achieve high portfolio success 
rates when making use of forward-looking information in portfolio 
management. 

Conclusion
In this study, we used forward-looking information, extracted from 
observed market-quoted derivative prices, to determine safe retirement 
withdrawal rates. In particular, we extracted the forward-looking risk-
neutral and real-world return distribution functions, and used the 
distribution moments as a signal in a simple tactical asset allocation 
framework. We found that using forward-looking information in a tactical 
asset allocation framework yielded higher portfolio returns with a lower 
variation in returns compared to the portfolio with a fixed asset allocation.

Many large financial firms frequently extract forward-looking information 
from derivative securities to infer market sentiment. Therefore, using a 
forward-looking modelling approach provided a more market consistent 
analysis of safe retirement withdrawal rates. We found that the portfolio 
based on the forward-looking real-world skewness in a tactical asset 
allocation framework supported safe withdrawal rates of up to 7% per 
annum (inflation adjusted). This strategy obtained similar success rates 
to the previously quoted 4% safe withdrawal rate determined from the 
fixed asset allocation based on historical returns. Thus, the performance 
of the real-world moments, used as a signal in a tactical asset allocation, 
allows for the possibility of higher withdrawal rates with high success 
rates. This confirms the usefulness of using forward-looking real-world 
moments in the management of retirement portfolios to improve the 
modelling of safe retirement withdrawal rates.
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