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Mechanical loading of finger bones (phalanges) can induce angular curvature, which benefits arboreal 
primates by dissipating forces and economising the recruitment of muscles during climbing. The recent 
discovery of extremely curved phalanges in a hominin, Homo naledi, is puzzling, for it suggests life in an 
arboreal milieu, or, alternatively, habitual climbing on vertical rock surfaces. The importance of climbing 
rock walls is attested by several populations of baboons, one of which uses a 7-m vertical surface to enter 
and exit Dronkvlei Cave, De Hoop Nature Reserve, South Africa. This rock surface is an attractive model 
for estimating the probability of extreme mechanical loading on the phalanges of rock-climbing primates. 
Here we use three-dimensional photogrammetry to show that 82–91% of the climbable surface would 
generate high forces on the flexor tendon pulley system and severely load the phalanges of baboons and 
H. naledi. If such proportions are representative of vertical rock surfaces elsewhere, it may be sufficient 
to induce stress-mitigating curvature in the phalanges of primates.

Significance:

• We present the first three-dimensional photogrammetric analysis of a vertical rock surface climbed by a 
non-human primate, the chacma baboon (Papio ursinus).

• Our results show that a large proportion of a vertical rock wall would compel crimp and slope hand 
positions during climbing – grips that could explain the extraordinary phalangeal curvature expressed by a 
Middle Pleistocene hominin, Homo naledi. 

Introduction
Bone is a dynamic tissue, and repeated mechanical loading can induce changes to its density and angular curvature. 
For example, loading stresses from vertical climbing and suspensory locomotion can increase the curvature of 
primate finger bones (phalanges) during growth and development.1-3 Greater curvature is advantageous to arboreal 
primates because it dissipates forces and dampens recruitment of muscles during finger flexion, thus economising 
energetic costs and simultaneously lowering the risk of falling. Phalangeal curvature is therefore widely viewed as 
a measure of arboreality among primates – it is a classic form-functional trait that informs our interpretations of 
behaviour and ecology in the fossil record1-7 (but see Wallace et al.8 for a counterexample).

Upsetting this orthodoxy is the hand of Homo naledi, recovered from Rising Star Cave, South Africa, in 2013–14 
and described in 2015.9 The degree of phalangeal curvature is astounding, with an included angle (θ) that far 
exceeds that of modern humans (Figure 1). Such curvature would normally and unequivocally suggest an arboreal 
milieu3, but there are at least two reasons to doubt such an inference for H. naledi. First, the phalanges are relatively 
short, resulting in humanlike hand proportions.9 No arboreal primate has phalanges that are both short and curved; 
it is an aberration that confounds conventional interpretation. Second, existing specimens of H. naledi are dated to 
the Middle Pleistocene between 335 kya and 241 kya.12 Nearby faunal assemblages of comparable age – those of 
Gladysvale13 and Lincoln Cave, Sterkfontein14 – favour habitat conditions that resemble those of today, i.e. a mix of 
acacia woodland and grassland, neither of which would incentivise a strongly arboreal ecology.15

So, what was H. naledi doing with its hands? Voisin et al.16 examined the shoulder girdle of H. naledi and reported 
morphological traits associated with vertical climbing and suspension. But given the inferred habitat conditions, 
they discounted arboreal activities and argued instead for ‘movement across and climbing on rocky walls’16(p.2). 
Voisin et al.’s hypothesis is intriguing given that rock climbing puts high forces on finger flexor tendons, especially 
during the ‘crimp’ position (Figure 2).17-20 This position puts extreme stress on the flexor tendon pulley system, a 
series of five annular (A1–A5) and three cruciate ligaments (C1–C3) that resist bowstringing of the tendons. In 
other words, the pulley system holds the tendons close to the bone, effectively converting linear force into torque 
that produces flexion at the metacarpophalangeal and interphalangeal joints (Supplementary figure 1). 

Ruptures of A217 and other severe pulley injuries are common among human rock climbers21, and a testament to 
the mechanical loading of phalanges. Indeed, frequent rock climbing is known to cause geometric and cortical 
thickening of the phalanges22 and it may induce greater curvature, at least hypothetically. Tan et al.18 calculated the 
benefits of greater phalangeal curvature for reducing tendon and pulley stresses of fingers in the crimp position; 
however, affirming increased curvature among rock climbers is difficult because it is challenging to measure angles 
from radiographs of living subjects. Another model system is needed.
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Figure 1: Cladogram of baboons (Papio), gibbons (Hylobates), 
orangutans (Pongo), gorillas (Gorilla), chimpanzees (Pan), 
an indeterminate hominin (OH 86), and genus Homo. The 
branches are tipped with representative photographs of 
manual proximal phalanges in lateral view, together with mean 
degrees of curvature of the proximal phalanx, as measured by 
computing the included angle (θ). Data sources for θ: Stern 
et al.10 (humans), Jungers et al.6 (non-human primates), and 
Domínguez-Rodrigo et al.11 (OH 86). The θ value for H. naledi 
was calculated by one of us (S.M.S.) as the mean of digits II 
(42.71), III (46.49), IV (48.44), and V (31.88) of hand 1, the 
right hand of an adult (see Kivell et al.9 for further details).

Some populations of baboons and chimpanzees enter cave systems 
to avoid predators and/or regulate body temperature.23-34 Some caves 
are only accessible by climbing sheer cliffs.28 For example, Marais23 
described a group of chacma baboons (Papio ursinus) and their daily 
ascent to a cliffside cave opening ≈150 m high. His vivid account 
speaks to the mechanical loading of fingers: ‘they had to go more 
than a mile hanging only by their fingers to the [cliff] ledge; their hind 
feet against the smooth surface’23(p.63). In some cases, baboons must 
negotiate vertical rock surfaces within a cave. For example, at Misgrot 
Cave in Thabazimbi, South Africa, baboons face a perilous 17-m vertical 
descent from ground level (Figure 3)32, whereas those entering Dronkvlei 
Cave, De Hoop Nature Reserve, South Africa, descend 7 m to access 
the interior (Figure 4). Baboons use both caves regularly as overnight 
sleeping sites; Dronkvlei is used on 28% of nights.30 

Study aims and design
Dronkvlei Cave is an appealing model system for exploring the 
topography of a vertical rock surface and its potential to load primate 
fingers. Here we ask a basic question: what proportion of a vertical 
rock wall would, when climbed, force the distal phalanges of P. ursinus 
(and, hypothetically, H. naledi) into a crimp or slope grip position? It 
is a thought experiment that leaves formal comparative measures of 
phalangeal curvature in P. ursinus as a priority for future research. To 
answer our question, we used three-dimensional (3D) photogrammetry 
to detect and quantify concavities in the surface that range from a 
minimum graspable depth (determined as the length of the third distal 
phalanx) to a minimum crimpable depth (determined as the sum length 
of the third intermediate and distal phalanx) – i.e. depths of 11–25 mm 
for P. ursinus and 14–37 mm for H. naledi (Table 1). 

Methods
Data acquisition
Photogrammetry is a low-cost method for extracting accurate 
measurements from photographs. It is well suited for producing 3D models 
of irregular surfaces, such as cave walls.36 To obtain photographs of the 
rock surface climbed by baboons, we used metal irrigation piping to 
construct a temporary T-shaped scaffold. The cross pipe was mounted 

Illustration: ©William Scavone, reproduced with permission. 

Anatomical labels: MC, metacarpal; PP, proximal phalanx; IP, intermediate phalanx; DP, distal phalanx; FDS, flexor digitorum superficialis; FDP, flexor digitorum profundus 

Figure 2: Common handholds on rock surfaces and the underlying flexor tendon pulley system. Up to 90% of climbers use the crimp grip (left), where 
the proximal interphalangeal (PIP) joints are flexed from 90° to 100° and the distal interphalangeal (DIP) joints are either fully extended or 
hyperextended.17 The second most common grip is the slope grip or open hand grip (right), which is distinguished by extended or slightly flexed 
PIP joints and flexion (50° to 70°) of the DIP joints.17 

https://doi.org/10.17159/sajs.2021/10409
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a b

Photographs: Jason L. Heaton, reproduced with permission.

Figure 3: Misgrot Cave in Thabazimbi, South Africa. Chacma baboons (a) enter the cave at ground level before negotiating (b) a steep vertical descent of 17 m.

c

ba

Figure 4: Dronkvlei Cave, De Hoop Nature Reserve, South Africa. Chacma baboons (a) enter the cave through a 1-m opening at ground level before 
negotiating (b) a vertical descent of 7 m. The preferred surface of the baboons is clearly differentiated by a dark patina. This surface area is 
the focus of our analysis. In addition, we produced (c) a map of the interior, noting the presence of skeletal remains. Some remains are now 
accessioned at the University of the Witwatersrand (repository prefix U.W., site designation 116, see Zipfel and Berger35 for cataloguing details).
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at the cave opening and fixed to a vertical pipe that extended to the shaft 
floor (Figure 4a), where it was weighted to minimise lateral excursions. We 
hitched a digital camera to this pipe so that photography occurred from 
a fixed central axis, and we mounted ground control points to the rock 
surface. We abseiled into the cave to operate the camera, aiming for 80% 
overlap between serial photos in the horizontal and vertical planes.

Table 1: Lengths (in mm) of the third intermediate and distal phalanx of 
the hand. Most measures of Papio ursinus were obtained from 
specimens in the School of Anatomical Sciences, University of 
the Witwatersrand (see Supplementary table 1 for catalogue 
numbers and corresponding measurements).

Species (N 
individuals)

Intermediate phalanx 
mean ± 1 SD 

(range)

Distal phalanx 
mean ± 1 SD 

(range)
Source

Papio ursinus (19)
14.4 ± 1.7

(12.2–19.7)

10.8 ± 1.3

(9.2–13.8)
This study

Homo naledi (2)
22.2

(21.8–22.6)
14.4

Kivell et 
al.9, Kivell, 
unpublished

Photogrammetry
We processed the image set (n=354) with Agisoft Metashape Pro 
(formerly Photoscan Pro), a common package used in archaeological 
research.37-39 Due to logistical constraints in the field, we did not record 
spatial data for each ground control point, so the model was scaled to 

real-world dimensions by using the targets as scale bars, and manually 
oriented. Manual orientation is suboptimal for any calculations that 
rely on the slope of the wall, but it should not affect the local depth 
calculations described below. After alignment, dense cloud construction, 
and texture application, we trimmed the 3D model to the area used for 
climbing (Figure 4b) and exported it as an orthophoto (Figure 5a) and 
digital elevation model (DEM) with an arbitrary local coordinate system. 
We brought the resulting geotiffs, both with sub-millimetre resolution, 
into ArcGIS and SAGA GIS for further processing and visualisation.

Depth processing
In ArcGIS, the DEM raster treats the surface of the rock wall as vertical 
elevation data. To calculate the local relative depth of each raster cell 
in the rock wall, we used focal statistics with a small neighborhood, 
and maximum elevation as the statistics type, to create a raster of the 
local maximum height of the wall, and then smoothed that raster again 
with focal statistics over a wider neighborhood, creating a smoothed 
idealised model of the maximum height of the local surface of the cave. 
We subtracted the original DEM from this idealised surface to find the 
local difference between each cell and the average nearest ‘maximum’ 
value. Finally, we queried this raster of local depths for cells in two 
ranges (11–25 mm for P. ursinus and 14–37 mm for H. naledi) and used 
this value to calculate the total area of each range.

Results and discussion
The entrance to Dronkvlei Cave is a useful model for exploring potential 
stresses on the flexor tendon pulley system and phalanges of primates. 
We focused our analysis on the surface area climbed by baboons – 
representing 5.98 m2 (Figure 5a) – and we show that crimp- and slope-
inducing handholds are distributed relatively evenly across a nearly 
vertical plane (Figure 5b). However, the total area of such holds differed 
between the two species. 

a b c

Figure 5: Section of vertical rock wall at the entrance to Dronkvlei Cave, South Africa. It is a surface that baboons climb regularly (Figure 4b) and the 
focus of our analysis. (a) Composite orthophoto and ground control points. (b) Digital elevation model to visualise the rugosity and verticality 
of the surface (the cross-sectional profile on the left corresponds to the black line). Red surfaces slope outward, whereas green surfaces 
are relatively flat. (c) Hillshaded visualisation; the colours correspond to handholds that are likely to compel weight-bearing finger flexion by 
chacma baboons (Papio ursinus) and Homo naledi. The 3D mesh and raw photo are available in MorphoSource (https://www.morphosource.org/
projects/000348582).
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For P. ursinus, we calculated an area of 0.494 m2 (2 514 603 cells of 
0.44 mm x 0.44 mm), and for H. naledi an area of 0.353 m2 (1 795 106 
cells of 0.44 mm x 0.44 mm), with an overlap of 0.282 m2 (Figure 3c). 
Thus, 6–8% of the total surface area, when gripped, is expected to 
generate high forces on the flexor tendon pulley system and severely 
load the phalanges of both primate species. Such an estimate is 
conservative, however, as a large proportion of the rock surface is 
smooth and unclimbable. When we subtract surface depths of <11 mm 
and <14 mm from the total, the total graspable surface area is reduced 
to 0.602 m2 and 0.390 m2, respectively, meaning that as much as 82% 
(P. ursinus) or 91% (H. naledi) of usable handholds would produce 
forces that would favour greater phalangeal curvature.

The significance of our finding is a matter of speculation – even at 8% 
of the total surface area, the rock wall of Dronkvlei Cave is a non-trivial 
source of phalangeal loading when extrapolated over a lifetime. The 
average life expectancy of a female baboon that survives to adulthood is 
12.1 years in Amboseli, Kenya, and 19.7 years in Gombe, Tanzania (with 
record longevities of 27 years at both sites).40 If we use these parameters 
to estimate an average life expectancy of ≈16 years for P. ursinus, and 
given that animals climb 12 m to enter and exit Dronkvlei Cave on 28% 
of days30, an individual would encounter ≈1.6 km of crimp- and slope-
grip-inducing surfaces over its lifetime [(16 years × 365 days × 0.28) 
× (12 m × 0.08 m)]. It is a crude estimate of mechanical ‘loading’ on 
the flexor tendon pulley system and distal phalanges, but it invites an 
analysis of phalangeal curvature in this population. 

More instructive perhaps are the mummified/skeletal remains of 
baboons in Misgrot Cave.34 These individuals climb greater distances 
than those at Dronkvlei (Figure 3b), but the frequency of overnight use 
is unknown. Still, each climbing bout carries great risk. Falling from 
heights as high as 17 m is likely to cause severe morbidity or outright 
mortality15, although the rugosity of the dolomitic surface may differ 
from the limestone surface of Dronkvlei Cave in crucial ways, affecting 
risk. Misgrot Cave is a promising site for studying the natural history of 
why, and the mechanics of how, baboons climb vertical rock surfaces, 
as well as the effects on their finger bones. Another promising study 
system lies in the lava tubes of Mount Suswa, Kenya, the site of an 
oft-cited analysis by Simons24, who described the skeletal remains of 
baboons (P. anubis) and leopards, sometimes commingled, at the base 
of vertical shafts. Remains of baboons continue to accumulate there, 
serving as a tourist attraction. 

So, did H. naledi climb vertical rock surfaces regularly? Answering this 
question is beyond reach at present, but their bodies, alive or dead, 
negotiated at least two steep walls of dolomite to arrive in the Dinaledi 
Chamber of Rising Star Cave: an entry point through the roof of Postbox 
Chamber and a 12-m fissure (‘The Chute’).12 Our results suggest that 
climbing these surfaces would have compelled the use of crimp or slope 
grips to some extent, and Tan et al.’s18 model of flexor tendon pulley 
forces suggests that H. naledi would have enjoyed a 23% reduction 
in phalangeal forces compared to modern humans (Supplementary 
figure 2). Such findings indicate that high phalangeal curvature – whether 
mechanically induced or genetically mediated8 – would have conferred 
advantages to H. naledi during rock climbing.

A limitation of our model system approach is that H. naledi (weighing 
~40 kg41) was heavier than P. ursinus is now and probably longer-
lived, factors that would load its fingers to a greater extent. Yet the pedal 
phalanges of H. naledi express the same curvature as those of Papio, 
which is ‘[possibly] indicative of elevated pedal grasping ability’42(p.4). 
Thus, both species are equipped to grip vertical rock surfaces with their 
feet – a prudent means of distributing body mass and mitigating forces 
on the fingers during climbing. 

We conclude by acknowledging that rock-climbing baboons are an 
imperfect model for interpreting the curious anatomy of H. naledi, but 
we would argue that detailed studies of their functional anatomy and 
climbing kinematics, together with systematic measures of the rock 
surfaces used, are promising areas of future research. 
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