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Introduction
Vision is the primary sensory modality for humans—and most

other mammals—by which they perceive the world. In humans,
vision-related areas occupy about 30% of the neocortex.1 Light
rays are projected upon the retina, and the brain tries to make
sense of the world by means of interpreting the visual input
pattern. The sensitivity and specificity with which the brain
solves this computationally complex problem cannot yet be
replicated on a computer. The most imposing of these problems
is that of invariant visual pattern recognition.

Recently it has been said that the prediction of future sensory
input from salient features of current input is the keystone of
intelligence.2 The neocortex is the structure in the brain which is
assumed to be responsible for the evolution of intelligence.
Current sensory input patterns activate stored traces of previous
inputs which then generate top-down expectations, which are
verified against the bottom-up input signals. If the verification
succeeds, the predicted pattern is recognised. This theory explains
how humans, and mammals in general, can recognise images
despite changes in location, size and lighting conditions, and in
the presence of deformations and large amounts of noise. Parts
of this theory, known as the memory-prediction theory (MPT),
are modelled in the Hierarchical Temporal Memory or HTM
technology developed by a company called Numenta®;3 the
model is an attempt to replicate the structural and algorithmic
properties of the neocortex.3 Spatial and temporal relations
between features of the sensory signals are formed in an hierar-
chical memory architecture during a learning process. When a
new pattern arrives, the recognition process can be viewed as
choosing the stored representation that best predicts the pattern.
Hierarchical Temporal Memory has been successfully applied to
the recognition of relatively simple images,4 showing invariance
across several transformations and robustness with respect to
noisy patterns.

We have applied the concept of HTM, as implemented by
Numenta®, to land-use recognition, by building and testing a
system to learn to recognise five different types of land use.

Overview of the HTM learning algorithm
Hierarchical Temporal Memory can be considered a form of a

Bayesian network, where the network consists of a collection of
nodes arranged in a tree-shaped hierarchy.4 Each node in the
hierarchy self-discovers a set of causes in its input, through a
process of finding common spatial patterns and then detecting
common temporal patterns.4 Unlike many Bayesian networks,
HTMs are self-training, have a well-defined parent/child rela-
tionship between each node, inherently handle time-varying
data and afford mechanisms for covert attention. Sensory data
are presented at the bottom of the hierarchy. To train an HTM, it
is necessary to present continuous, time-varying, sensory inputs
while the causes underlying the same sensory data persist in the
environment. In other words, you either move the senses of
the HTM through the world, or the objects in the world move
relative to the HTM’s senses. Time is the fundamental compo-
nent of an HTM, and can be thought of as a learning supervisor.
Hierarchical Temporal Memory networks are made of nodes;
each node receives as input a temporal sequence of patterns. The
goal of each node is to group input patterns that are likely to
have the same cause, thereby forming invariant representations
of extrinsic causes.

An HTM node uses two grouping mechanisms to form
invariants (Fig. 1). The first mechanism is called spatial pooling,
in which raw data are received by the sensor; spatial poolers of
higher nodes receive the outputs from their child nodes. The
input of the spatial pooler in higher layers is the fixed-order
concatenation of the output of its children. This input is repre-
sented by row vectors, and the role of the spatial pooler is to
build a matrix (the coincidence matrix) from input vectors that
occur frequently. There are multiple spatial pooler algorithms,
e.g. Gaussian and Product. The Gaussian spatial pooler algorithm
is used for nodes at the input layer, whereas the nodes higher up
the hierarchy use the Product spatial pooler. The Gaussian
spatial pooler algorithm compares the raw input vectors with
the existing coincidences in the coincidence matrix. If the Euclid-
ean distance between an input vector and an existing coinci-
dence is small enough, the input is considered to be the same
coincidence, and the count for that coincidence is incremented
and stored in memory.
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The aim of this paper is to present the application of memory-
prediction theory, implemented in the form of a Hierarchical Temporal
Memory (HTM), for land-use classification. Numenta® HTM is a new
computing technology that replicates the structure and function of
the human neocortex. In this study, a photogram, received by a
photogrammetric UltraCamD® sensor of Vexcel, and data on 1 513
plots in Manzanilla (Huelva, Spain) were used to validate the classi-
fication, achieving an overall classification accuracy of 90.4%. The
HTM approach appears to hold promise for land-use classification.

: memory-prediction theory, NuPIC®, UltraCamD® sensor,
Hierarchical Temporal Memory

Fig. 1. The HTM node structure.4
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The Product spatial pooler is always part of a node higher up
the hierarchy, and receives the concatenation of the outputs of its
child nodes. This vector is divided into N portions, with N being
the number of children of the node. The Product spatial pooler
sets the highest value in each of these N distributions to 1, while
the other values are set to 0. These new vectors are stored in the
coincidence matrix, and the counts of the coincidences that al-
ready exist are incremented.

The second mechanism is called temporal pooling, by which
patterns that are temporally close are grouped together. In this
way, patterns that are very different, but that have a common
cause, can be in the same group.

Both the spatial and temporal poolers switch from learning to
inference mode at some point. In the case of the spatial pooler, its
output is a vector of length equal to the number of patterns
pooled by the node, and the ith position in this vector corre-
sponds to the ith pattern inside this spatial pooler. This output is
a probability distribution of the similarity between the input pat-
tern and the stored patterns, measured in terms of Euclidean
distances. An assumption commonly made by the designers of
HTM is that the probability that a pattern is closest to another
pattern falls off as a Gaussian function of the Euclidean distance,

therefore it can be calculated as proportional to e
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and the outputs of the spatial pooler are the inputs of the tempo-
ral pooler. As mentioned before, the temporal pooler forms
groups of patterns that are likely to follow each other in time,
since it would indicate that they are likely to have the same cause
in the world.

The designers of HTM used a time adjacency matrix partitioned
with a ‘greedy’ algorithm. This algorithm creates groups by finding
the most connected pattern that is not part of a group, and pick-
ing the N most connected patterns to this pattern recursively.4

For every input from the spatial pooler, the temporal pooler out-
puts a probability distribution over its groups, propagating the
uncertainties in the hierarchy in a Bayesian belief propagation
manner. The ambiguous information propagated from the
bottom of the hierarchy is resolved higher in the hierarchy.

Materials and methods
The study area was located in the central plains of Huelva

Province, Spain (Fig. 2), in the subregion known as Manzanilla
(37°23’N; 6°25’W).

Digital aerial photograph
The dataset used in this research was a photogram received by

a photogrammetric UltraCamD® sensor of Vexcel on 23 October
2007, with dimensions of 7 500 × 11 500 pixels. Its band combina-
tion was formed by red, green and blue. The digital aerial photo-
graphs had a special resolution of 30 cm. The photogram was
segmented in small images of 128 × 128 pixels, as the HTM
platform classifies only small images which contain only one
pattern.

Map of crops and exploitation
A map of crops and exploitation of the region of Huelva (2007)

was used to carry out the ‘training’ of the classification and its
subsequent validation. The land use in this area is classified
as: Vitis vinifera L. (vineyards), Olea europaea L. (olive groves),
fallow land, irrigated land and built-up surface (Fig. 3). Table 1
shows the number of training and test images for the architec-
ture demonstration.

We used NuPIC® (Numenta® Platform for Intelligent Com-
puting) software developed by Numenta® for implementing

HTMs to implement our HTM network. The company provides
examples of how to create and use HTMs in various scenarios.
One of these examples trains an HTM to recognise black and
white pictures (one bit per pixel) with different levels of defor-
mations. Another example uses an HTM to classify fruit images
(greyscale, eight bits per pixel). We adapted these examples to
solve problems related to the classification of different land uses
using small greyscale images (128 × 128 pixels), because HTMs
classify only these kinds of images. To implement an HTM,
two steps have to be undertaken: creating the architecture and
training the architecture with a set of training patterns. After we
created an architecture and trained the network on the digital
aerial photographs, we tested the HTM with a test set.

Hierarchical Temporal Memory networks are built and config-

Fig. 2. A map showing the study area.

Fig. 3. Land-use classification within the study area.

Table 1. The number of training and test images.

Category Training images Test images

Vitis vinifera L. 300 150
Irrigated land 300 150
Olea europaea L. 300 150
Fallow land 300 150
Built-up surface 300 150
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ured by writing Python scripts. While the majority of the scripts
follow a standard pattern, each network requires customisation.
One must leverage in-depth knowledge of the data to design
and configure the hierarchy of nodes. Each node algorithm
needs to be customised based on the input values it is encounter-
ing. Because of the large number of node parameters, node con-
figuration values will most likely be ‘tweaked’ after each
iteration, in order to improve accuracy. The network structure
usually remains the same, reducing the amount of code that must
be changed.

Our HTM model consisted of three levels (Fig. 4): Level 1 (the
input level) consisted of 16 nodes, each receiving a feature and
the corresponding delta; Level 2 consisted of four nodes, each
receiving the output of four input level child nodes; and Level 3
consisted of one top level node.

The parameters of the HTM network used were as follows:

Level 1:
• levelSize = 64
• pooler algorithm: gaussian; sigma = 0.4
• maxDistance = 5
• maxGroupSize = 1 435
• grouper algorithm: sumProp

Level 2:
• levelSize = 4
• pooler algorithm: product
• maxGroupSize = 1 435
• grouper algorithm: sumProp

Level 3:
• levelSize = 1
• pooler algorithm: product
• mapper algorithm: sumProp

‘maxDistance’ on the first level defines the minimum value
that the squares of the Euclidean distances between an input (x)
and all the previously memorised inputs (yi) have to take in order
for x to be considered novel. ‘maxGroupSize’ sets an upper limit
for the number of quantised inputs that can form a group in the
temporal pooler. The pooler algorithm used by the spatial pooler
of higher levels is ‘product’, which means that the belief that an
input during inference is similar to a given vector (previously
memorised by the spatial pooler) is calculated as follows:

belief [child [child
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where n children is the number of children the node has, x is the
input vector, yi are the vectors previously stored by the spatial
pooler, and a[childn] is the part of vector a that is received from
the nth child.

Finally, the temporal pooler at each level uses the ‘sumProp’
algorithm, which takes the highest belief from each group to
generate a distribution of beliefs over temporal groups during
inference.5

This type of hierarchical network structure is analogous to the
hierarchy of the visual region in human neocortex, which also is
organised as a hierarchy of cortical regions. The receptive field
size in the cortical regions also gradually increases in the higher
levels of the hierarchy. The neural structures in higher regions of
the cortex represent increasingly complex structures and the
structures in the top visual region represent visual objects, just as
they do in this model.

Accuracy evaluation and validation
The accuracy evaluation is a general term to compare the

generated classification with known geographical information.
Its main aim is therefore to determine the veracity of the classifi-
cation process. A true-terrain image from the information

contained in the crop maps and exploitations of the region
of Huelva was prepared. The statistics used were: producer’s
accuracy, user’s accuracy, overall accuracy and Kappa statistic.

The Kappa statistic is a measure of the difference between the
observed accuracy and the random possibility of chance agree-
ment between the reference data and the classification.6 When
the total number of correctly classified pixels in a class is divided
by the total number of pixels that should have been classified in
that class, it is known as the producer’s accuracy.7 If the total
number of correctly classified pixels in a class is divided by the
total number of pixels that were actually classified in that class
(both correctly and incorrectly), the result is a measure of the
user ’s accuracy.7 The overall accuracy is the percentage of
correctly classified pixels. We used Numenta® Vision Test App®

software to validate our HTM network.

Results and discussion
The methodology proposed was applied to the region of study

obtaining a final classification of land use. Table 2 shows the
accuracy of classification in the digital aerial photograph accord-
ing to its boundary analysis. The highest producer’s accuracy
was achieved for the ‘built-up surface’, having a value of 100%,
while the lowest producer’s accuracy was for ‘Vitis vinifera L.’
(81.33%).

In the case of the user’s accuracy, the highest value again was
obtained for the ‘built-up surface’ class (100%), while the lowest
corresponded to ‘Olea europaea L.’ (73.03%). The HTM classifica-
tion thus gave an high overall accuracy of 90.4%, and the Kappa
statistic had a value of 0.80, showing that the classification was
80% better than a random one.

We also verified the capability of the model to learn invariant
representations from visual patterns and to store these patterns
in the hierarchy and recall them auto-associatively. During the
study, we varied many internal constants affecting the learning
process, and also made modifications to the algorithms and data
structures themselves. Figures 5–8 illustrate the main recognition
capabilities of the system, trained to recognise five categories of

Fig. 4. The HTM model with three layers of nodes.4



images. One of the two original training images in the category
‘Olea europaea L.’ is shown in Fig. 5. The system easily recognised
the shifted version of the original image, shown in Fig. 6.

Note that the number of the ‘Olea europaea L.’ and their
arrangement were the only invariants that the system was

explicitly exposed to during the training; hence the other
invariants described below were discovered automatically by
the system.

The system can function as an auto-associative memory, as
demonstrated in Fig. 7. Given a part of the original image, the
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Fig. 5. Original image of the category ‘Olea europaea L.’.

Fig. 6. Rotated image of the category ‘Olea europaea L.’.

Table 2. Producer’s accuracy, user’s accuracy, overall accuracy and Kappa statistic of the HTM classification obtained from the digital aerial photograph.

Category Vitis vinifera L. Irrigated land Olea europaea L. Fallow land Built-up surface Total

Vitis vinifera L. 122 28 0 0 150
Irrigated land 1 134 12 3 0 150
Olea europaea L. 20 0 130 0 0 150
Fallow land 0 0 8 142 0 150
Built-up surface 0 0 0 0 150 150
Producer’s accuracy 81.33% 89.33% 86.66% 94.66% 100%
User’s accuracy 85.31% 100% 73.03% 97.93% 100%
Overall accuracy 90.4%
Kappa statistic 0.80



missing information was reconstructed and the category was
correctly predicted. This resembles a capability of the brain to
recall missing information given only partial input. The system
can also tolerate a substantial amount of noise of various types
and still discern and correctly recognise the category, as shown
in Fig. 8.

We observed that the system performed better overall while
recognising complex images, which have more discernible
features, such as corners and line intersections. For example,
images of ‘fallow land’ and ‘irrigated land’ were not recognised
as easily as ‘built-up surface’ or ‘Vitis vinifera L.’. The system also
sometimes tended to confuse categories sharing many similar
shapes, such as ‘Vitis vinifera L.’ and ‘Olea europaea L.’. We also
observed that the recognition performance was slowly degraded
when more categories were introduced in training, arising from
the same confusion between similar images. For example, we
tried to classify different irrigated crops (Phaseolus vulgaris L.,
Triticum aestivum L., Vicia faba L. and Pisum sativum L.), but the
analysis and result showed a small overall accuracy of 69.65%

and a Kappa Statistic of 0.72.
It is also useful to note the relative strength of beliefs of the ten

best-predicted categories that is displayed by the system as a bar
graph. When input image is not heavily distorted, and resembles
its true category more than any other categories, we see a graph
similar to the one shown in Fig. 9. We can judge from the graph
that the winning prediction is very confident. When the input
image is not readily recognisable, or seems similar to several
categories, the graph would look like the one in Fig. 10.

Conclusions
The images from the digital aerial sensors in our model may be

an extremely useful tool in the agriculture field, providing an
accurate result for the use of land in a fixed area under certain
conditions. By contrast, traditional classification techniques,
basically pixel-based approaches, are limited in that they typi-
cally produce a characteristic ‘salt and pepper’ effect, and are
unable to extract objects of interest. An HTM network considers
spatial and temporal relations between features of the sensory
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Fig. 7. Partial image of the category ‘Olea europaea L.’.

Fig. 8. Image of the category ‘built-up surface’ with noise.
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signals which are formed in an hierarchical memory architecture
during a learning process. The methods are not, however, actu-
ally comparable because HTM classifies only small greyscale
images with only one pattern. In the future, we expect that the
platform will be able to classify more than one pattern, and the
‘salt and pepper’ effect could be eliminated.

This model shares many common ideas with traditional neural
networks. The hierarchy consists of many relatively simple units
(subregions) that do the same basic operation and can be made
to run in parallel. It solves problems by using cooperation
between subregions without a centralised algorithm. The
knowledge and beliefs in the system are distributed between the
subregions in various hierarchical levels. The system learns its
skills by training and is able to generalise. The memory-
prediction framework, however, is an inferential system that
uses beliefs for learning and recognition. Nevertheless, due to
their similarities, the model shares a number of advantages with
neural networks; it clearly can function as an associative
memory, can tolerate noise and can generalise training images.

Finally, this model offers a greater promise of understanding
what intelligence is by closely modelling the overall structure of
the human neocortex.
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Fig. 9. Graph showing 100% confidence in category prediction (built-up surface).

Fig. 10. Graph showing lack of confidence in single-category prediction.


