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A simulation age-specific tuberculosis model for the 
Cape Town metropole

Tuberculosis (TB) continues to present an insurmountable health burden in the Western Cape Province of 
South Africa. TB dynamics in adults is different from that in children, with the former determining the latter. 
Because the dynamics of TB are largely dependent on age, planning for interventions requires reasonable 
and realistic projections of the incidence across ages. It is thus important to model the dynamics of TB using 
mathematical models as predictive tools. We considered a TB compartmental model that is age dependent 
and whose parameters are set as functions of age. The model was fitted to the TB incidence data from the 
Cape Town metropole. The effective contact rate, a function of both age and time, was changed to fit the 
model to the notification rates of active TB disease cases. Our simulations illustrate that age structure plays 
an important role in the dynamics of TB. Projections on the future of the epidemic were made for each 
age group. The projected results show that TB incidence is likely to increase in the lower age groups of 
the population. It is clearly evident that even very simple models when applied to limited data can actually 
give valuable insights. Our results show that the age groups who have the highest incidence rates of active 
TB disease have the highest contribution in the transmission of TB. Furthermore, interventions should be 
targeted in the age group 25–34 years.

Introduction
Mycobacterium tuberculosis (Mtb) is transmitted by airborne particles of bacilli. Tuberculosis (TB) infection results 
when the bacterium is deposited in the lungs of exposed persons.1,2 A small proportion (approximately 10%)3 of 
persons progress to active TB and become infectious within the first 2 years of infection, while the remainder 
remain latently infected. Latent infections are asymptomatic and do not contribute to TB transmission, but they 
may progress to active TB disease through either endogenous reactivation or exogenous re-infection. Pulmonary 
TB, which refers to TB in the lungs, is the most common form of TB.4 Adults might suffer from this type of TB many 
years after a primary infection, arising from either endogenous reactivation of the primary infection or a recent, 
exogenous re-infection.5

Tuberculosis is a major problem in the Western Cape Province of South Africa. Much research on TB has been 
done in the last decade.5-10 The incidence of active TB disease in the Cape Town metropole differs for different age 
groups. Within the 0–5-year age range, the incidence of active TB disease is quite high, as young children are at 
higher risk of developing active disease once they are infected.7 Infection in this age group is predominantly as a 
result of contact with infectious adults in their households. Within the 5–14-year age range, the incidence of active 
TB disease is surprisingly low. This age group is referred to as the ‘golden years’. After age 14, the incidence 
of TB increases considerably as age increases. Then from 35 years onwards the incidence of TB decreases as 
age increases.5 

Planning for TB interventions requires reasonable and realistic projections of the incidence across the ages because 
TB dynamics in adults is different from that in children, with the former determining the latter. The parameters 
should also be age dependent as transmission differs across age.11 There is a general tendency for the age-specific 
incidence of TB to vary greatly within and between countries over time.12,13 This tendency is because of problems 
in determining TB infection and the effects of HIV which have increased the annual incidence rates of active TB 
disease since 1990 by two- to threefold in many countries of sub-Saharan Africa.10 A global plan to stop TB – ‘The 
Global Plan to Stop TB 2006–2015’ – was launched in 2006. The goals of this programme were twofold: (1) to 
reach the UN Millennium Development Goal of halting and beginning to reverse the epidemic by 2015 and (2) to 
halve 1990 levels of TB prevalence and death rates. The plan includes improving TB diagnosis, treatment success 
rate, TB case finding and TB care, and updating epidemiological projections.14 To achieve up-to-date projections, 
it is important to build mathematical models that take into account the important dynamics of the disease – such 
as age.

Many of the mathematical models for TB are of the SEIR compartmental structure, built on four standard 
compartments of individuals: those who are susceptible (S), latently infected or exposed (E), infectious (I) and 
recovered (R). To capture the complex transmission dynamics of TB, variations to the standard compartments 
have been proposed in recent years. For instance Guzzeta et al.15 considered a variant model built around the one 
proposed by Brooks-Pollock et al.11 in which the infectious class is divided into three sub-compartments in order to 
distinguish between the three forms of active TB (primary, endogenously reactivated and exogenously re-infected). 
Some models have considered re-infection and age structure within the same SEIR structural framework.3,11 So 
re-infection and age need to be incorporated into TB models because they are two of the most important underlying 
factors that influence the dynamics of TB. When Vynnycky and Fine16 excluded active TB disease which arose from 
exogenous re-infection from their model, the fit to observed notification rates was inaccurate. This inaccuracy in 
their study resulted because about 60% and 80% of the active disease incidence for the 40- and 60-year-olds, 
respectively, was a result of exogenous re-infection. Models have been successfully used to guide the choice of 
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case finding strategies, approaches to treatment and the establishment 
of operational targets that will result in the elimination of TB.17-19

It is thus important to model the dynamics of TB taking into consideration 
age. It is against this background that we look at a basic TB model that 
incorporates age structure in a homogenous population and apply it to 
data from the Western Cape Province of South Africa.

Because the data do not take into consideration the HIV status of 
individuals, we do not model explicitly the effects of HIV on TB 
dynamics. The model is fitted to data with the aim of making projections 
on the trends of TB in the Western Cape Province. These projections, 
performed across age groups, are essential in planning and public health 
interventions, especially in determining the age groups to target.

Model formulation
We begin by considering a five-state deterministic model comprising 
individuals who are susceptible to TB infection S(a, t), susceptibles 
who get vaccinated with BCG V(a, t), individuals with latent TB infection 
L(a, t), individuals with active TB disease I(a, t), and those who have 
recovered from active TB disease R(a, t). It is important to note that the 
state variables, for instance S(a,t), are the number of susceptibles of age 
a at any time t. We assume that

N(a,t)= S(a,t)+ V(a,t)+ L(a,t)+I(a,t) + R(a,t),
Equation 1

where N(a,t) is the total population size, of age a, at time t.

A proportion ψ(a)
 
is where ψ(a) ∈ [0, 1] of susceptibles is vaccinated at 

age a. Once they are vaccinated, they move into the class of vaccinated 
individuals. As the immunity of a vaccinated individual wanes, contact 
with an individual with active TB can result in infection. Upon infection 
these individuals progress to the compartment of the latently infected. 
We assume that vaccination reduces the risk of infection. The reduction 

in the risk of infection is measured by the parameter θ. At age a the 
risk of infection is θ(a), where θ(a) ∈ [0, 1]. We assume that the 
vaccine wanes completely by the age of 15 years and provision is made 
accordingly in the simulations by setting ψ = 0 after age 15. Depending 
on an individual’s immunity, a susceptible individual can either move 
to the compartment of latently infected individuals if the pathogen is 
hypovirulent or to the active disease compartment if the pathogen is 
hypervirulent. A susceptible individual is considered subject to primary 
progression if he or she develops active TB disease within the first 2 
years of infection. We assume that a proportion p(a) of individuals 
progress slowly to latent TB upon infection. Therefore, if p(a) = 0, all 
susceptible individuals progress to active TB disease while if p(a) = 1 
all susceptible individuals progress slowly to active TB disease. The 
susceptibles only move out of their state if they come in contact with 
infectious individuals in compartment I.

Individuals in the latent compartment can move to the compartment of 
the active TB disease through two processes: exogenous re-infection 
and endogenous reactivation. Latently infected individuals can be re-
infected with active TB disease if they come into contact with infectious 
individuals. The parameter associated with the re-infection of latently 
infected individuals is r1(a). If r1(a) ∈ (0, 1), the susceptibility decreases 
as a result of a previous history of infection, and if r1(a) > 1, the 
susceptibility increases as a result of previous infections. Individuals 
with active TB can recover and move to the compartment of the 
recovered who can relapse and develop active disease again. The 
recovered cases can also get re-infected if they come in contact with 
infectious individuals. Similarly, r2(a) is the parameter linked with the 
re-infection of recovered individuals. If r2(a) ∈ (0, 1), the susceptibility 
after recovery to re-infection decreases as a result of previous active 
TB development, and if r1(a) > 1, the susceptibility after recovery to re-
infection increases. The movement between compartments is shown in 
Figure 1 and the description of the state variables and parameters (rates) 
is given in Appendix 1 of the online supplementary material.
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(vaccinated at a very young age)

Susceptible individuals (S)

(those at risk of getting 
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Infectious individuals (I)
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and infectious)

Latently infected individuals (L)

(infected but not diseased)

Recovered individuals (R)

(those cured from active disease)
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Figure 1:	 A model of TB infection depicting the movement among the susceptible (S), vaccinated (V), latently infected (L), infectious (I) and recovered 
(R) individuals. 
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Using Figure 1, together with the model assumptions, we obtain the 
following system of partial differential equations:

∂S(a, t) ∂S(a, t)
∂t ∂a

+ = –[λ(a, t) + μ(a) + ψ(a)]S(a, t),

			   Equation 2

∂V(a, t) ∂V(a, t)
∂t ∂a

+ = ψ(a)S(a, t) – [θ(a)λ(a, t) + μ(a)]V(a, t),

			   Equation 3

∂L(a, t) ∂L(a, t)
∂t ∂a

+  = λ(a, t)[p(a)S(a, t) + θ(a)V(a, t) + r2(a)R(a, t)] – 

[r1(a) λ(a, t) + σ(a) + μ(a)]L(a, t),
			   Equation 4

∂I(a, t) ∂I(a, t)
∂t ∂a

+  = λ(a, t)[1 – p(a)]S(a, t) + [λ(a, t)r1(a) + σ(a)]

L(a, t) + ϕ(a)R(a,t) – [μ(a) + δ(a) + ρ(a)]I(a,t),
			   Equation 5

∂R(a, t) ∂R(a, t)
∂t ∂a

+  = p(a)I(a, t) – [r2(a)λ(a, t) + ϕ(a) + μ(a)]R(a, t),

			   Equation 6

where the force of infection is given by

λ(a, t) := β(a)I(t)				  
Equation 7

The transmission of TB occurs through respiratory droplets; therefore 
the infection process occurs as a result of an effective contact between 
a susceptible (or vaccinated susceptible) of age a at time t and infectious 
individuals at time t. The parameter β(a) is the rate of infection of age 
group a from all other age groups and I(t) is the total incidence at time t. 
This is synonymous to assuming the equilibrium age distribution of 
TB incidence through time (see also Murray and Salomon17). The age-
specific infection rate is thus given by λ(a, t) with units 1/time. 

The partial differential equations (Equations 2–6) describe the change 
in the state variables with respect to both age and time. The parameters 
also depend on age – see Appendix 1 of the online supplementary 
material for detailed descriptions of the parameters and state variables.

In this system, the number of births and deaths are balanced, 
while the number of births is equal to the number of people aged 0, 
N(O, t) = S(O, t).

The boundary conditions are

S(O, t) = Π(t) and V(O, t) = I(O, t) = L(O, t) = R(O, t) = 0

The boundary conditions mean that at age 0, we do not have any 
vaccinated, latent, infective or recovered individuals. We only have births 
at a non-constant rate Π(t).

By adding the boundary conditions and Equations 2–6 respectively, 
we obtain

N(O, t) = Π(t)
Equation 8

and

∂N(a, t) ∂N(a, t)
∂t ∂a

+ = – μ(a)N(a,t)-δ(a)I(a,t).
Equation 9

If we take δ to be very small so that δ ≈ 0 then we have:

∂N(a, t) ∂N(a, t)
∂t ∂a

+ = – μ(a)N(a, t).

Equation 10

We thus have

N(a, t) = 

if a ≤ t,

if a ≥ t,N(a – t, O) e

Π e 
∫

∫

μ(� ) d�

μ(� ) d�

–

–

O

a

a

a – t

{
                        

			   Equation 11

We can thus show that the population is bounded and the model is 
epidemiologically well-posed.

Results
The data set of active TB disease notification rates for the Cape Town 
metropole was obtained from the City of Cape Town Health Department 
and is displayed in Table 1. The data were collected from the TB clinics 
of the Cape Town metropole. The Cape Town metropole includes the 
regions Blaauwberg, Cape Town central, Greater Athlone, Helderberg, 
Khayelitisha, Mitchell’s Plain, Gugulethu, Nyanga, Oostenberg, South 
Peninsula, Tygerberg Eastern and Tygerberg Western. Data are available 
for the years 2003–2009 and are categorised into the following age 
classes: 0–4, 5–14, 15–24, 25–34, 35–44, 45–54, 55–64, 65–74 and 
75 or older. Data before the year 2003 are deemed to be unreliable and 
are not included here.

Table 1:	 Notification rates (per 100  000) for active TB disease of the 
Cape Town metropole population from 2003 to 2009, divided 
into age intervals 

Year

Age (years)

0–4 5–14 15–24 25–34 35–44 45–54 55–64 65–74 >74

2003 1812 975 3529 5766 4325 2180 859 257 81

2004 1791 1004 3771 6367 4637 2183 855 255 100

2005 1929 1009 4115 6998 5151 2596 939 344 119

2006 2506 1209 4772 7784 5859 3197 1171 357 135

2007 2516 1096 4656 7886 6019 3230 1215 373 148

2008 2830 1120 4564 8455 6589 3543 1299 387 147

2009 2847 1118 4591 8510 6498 3682 1448 386 147

Source: City of Cape Town Health Department

A distinction in the data is made between pulmonary and extrapulmonary 
TB. However, we considered only pulmonary TB in our study. The 
pulmonary TB cases are subject to either a positive smear test, negative 
smear test or no smear test. This data set is certainly important to our 
study because the data were collected over time and from different age 
groups. It is thus easier to apply the model to such a data set.

Research Article	 An age-specific tuberculosis model
Page 3 of 7	

http://www.sajs.co.za


4 Volume 109 | Number 9/10
September/October 2013

South African Journal of Science  
http://www.sajs.co.za

We assume that there is a uniform distribution of notification rates 
within the age intervals. The uniform distribution was used because 
we assumed all values within the age range had the same constant 
probability density. The data of an age interval are divided by the length 
of the interval to obtain the average notification rate for that interval. We 
then assume that the average notification rate applies to the midpoint 
of the interval. The longest age interval of the Cape Town metropole 
data set is assumed to be 10 years. The modified data for Cape Town 
metropole are displayed in Table 2.

Table 2:	 Modified notification rates (per 100 000) for active TB disease 
of the Cape Town metropole population from 2003 to 2009

Year

Age (years)

2 10 20 30 40 50 60 70 80

2003 362.4 97.5 352.9 576.6 432.5 218.0 85.9 25.7 8.1

2004 358.2 100.4 377.1 636.7 463.7 218.3 85.5 25.5 10.0

2005 385.8 100.9 411.5 699.8 515.1 259.6 93.9 34.4 11.9

2006 501.2 120.9 477.2 778.4 585.9 319.7 117.1 35.7 13.5

2007 503.2 109.6 465.6 788.6 601.9 323.0 121.5 37.3 14.8

2008 566.0 112.0 456.4 845.5 658.9 354.3 129.9 38.7 14.7

2009 569.4 111.8 459.1 851.0 649.8 368.2 144.8 38.6 14.7

The boundary conditions are assumed to be functions of time and 
the initial conditions functions of age (see Appendix 2 of the online 
supplementary material). We modified the conditions according to the 
total population size of the Cape Town metropole and distributed the 

total population differently in disease classes. We considered the year 
1996 to be the initial year. The boundary condition for the susceptibles is 
obtained by taking the population of the Cape Town metropole in 1996, 
multiplying this value by 0.29 (which is the proportion of the individuals 
aged up to 15 years) and then dividing it by 15 (which is the length of 
the age interval for which that population is applicable). The boundary 
condition is also made an increasing function of time in terms of the 
average annual growth rate of the population.20 We assume that the initial 
prevalence of active TB disease is 10%.21

The natural mortality rate is approximated by a Gompertz function 
because this function produces the most realistic patterns of human 
mortality by allowing the risk of death to increase exponentially with 
age.11 The values of the parameters in Table 3 are either assumed or 
approximated from the literature.

We fitted the effective contact rates (as shown in Table 4) to the data by 
changing the rates for each age class to fit the data. The fitting process 
was iterative. With most of the parameters obtained from the literature, 
the model was fitted to data for a particular age group while iteratively 
changing the values of β until a range of values were found that gave 
reasonable fits. The average values for each age group were then chosen 
to be the representative contact rates and are given in Table 4. 

We now use the discretised system of equations (Equations 1–5 in 
Appendix 3 of the online supplementary material) and fit it to the data 
of Table 2. By an iterative process that involves changing of parameter 
values for each age group, we obtain the mesh fit depicted in Figure 2. 
The figure has a corresponding colour bar to show how the incidence 
changes over years. Figure 2 is specifically a view from the left-hand 
side, in order to observe how the incidence of active TB disease appears 
for the younger ages.

Figure 2 is summarised into a simple and informative mesh colour map 
shown in Figure 3. The incidence can be interpreted from the adjacent 
colour bar. It is clear that the incidence is high for the very young and 
economically productive age groups and low for the older age groups. 
The highest TB incidence occurs at age 30.

It is important to predict the possible trends of TB over time, not only for 
planning interventions but also for formulating policies designed to halt 
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Table 3:	 Parameter values for different ages used in the model of TB disease 

Parameter

Age (years)

Birth 2 10 20 30 40 50 60 70 80

μ 0.0003 exp(0.0735 × a) [18]

ψ 0.75 0.675 0.08651251 0 0 0 0 0 0 0

P 0.8* 0.85* 0.9* 0.88* 0.9* 0.92* 0.93* 0.94* 0.95* 0.97*

r1
0.009 0.0075 0.0065 0.9 1.8 2.9 3.25 3.5 3.25 2.9

r2
0.0135 0.00715 0.002715 0.08 0.41 0.415 0.42 0.35 0.32 0.3

P 0.5** 0.57** 0.65** 0.2875** 0.65** 0.47** 0.38** 0.39** 0.4** 0.15**

ϕ 0.04** 0.06** 0.075** 0.035** 0.2** 0.13** 0.17** 0.21** 0.14** 0.3**

δ 0.14* 0.07* 0.014* 0.0315125* 0.05125* 0.065* 0.08* 0.1038* 0.3* 0.4*

σ 5 × 10-9 ** 1.5 × 10-8 ** 5 × 10-8 ** 2 × 10-8 ** 0.0001 ** 0.00022** 0.00025** 0.00028** 0.0004** 0.00045**

θ 0.05 0.25 0.45 0.55 0.65 0.68 0.72 0.75 0.85 0.95

Sources: All the parameter values with * are approximated from Liu et al.22 while the parameter values with ** are approximated from Cohen et al.23 The natural mortality rate was obtained from 

Brooks-Pollock et al.11 The other parameters are based on assumptions.
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Table 4:	 Transmission rates of TB for different age groups

Transmission rate
Age (years)

Birth 2 10 20 30 40 50 60 70 80

Minimum 0.0820 0.3122 0.1020 0.0364 0.0302 0.0102 0.0041 0.0014 0.0001 0.00001

Average 0.5063 2.1040 1.2749 0.1821 0.2006 0.1237 0.0715 0.0387 0.0375 0.1192

Maximum 0.7510 2.8701 1.7950 0.2518 0.2732 0.2500 0.1875 0.1238 0.1143 0.6058

the spread of TB. Mathematical modelling can be used to obtain sneak 
previews into future trends of diseases based on the currently available 
data. We simulated our model up to the year 2015. Figure 4 depicts 
the projection until 2015 for active TB disease incidence in the Cape 
Town metropole as a mesh colour map. All the age groups’ projections 
reflect a significant increase in active TB disease incidence. However, 
the projected incidence rates for individuals in the 0–4-year, 25–34-year, 
35–44-year and 45–54-year age groups reflect the most prominent 
increases in incidence rates over time. It is important to note that the 
incidence increases as age decreases. A comparison between Figure 
3 and Figure 4 shows that currently the highest incidence of TB occurs 
at 30 years, whereas in 2015, the projected highest incidence occurs 
at 25 years.
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Figure 2:	 View of a simulation of the change in the incidence of TB 
disease with age in the Cape Town metropole population in 
2003–2009. 
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Figure 3:	 A mesh colour map showing the best fit of the incidence of TB 
disease in the Cape Town metropole population in 2003–2009.
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Figure 4:	 A mesh colour map showing the projected incidence of active 
TB disease in the Cape Town metropole population.

The simulations of incidence over time for each age group are illustrated 
in Figure 5a–5c. Here it is important to note that the model fits to the 
data are discrete for two reasons: the model is discrete and each age 
group has its own parameters governing the dynamics of TB. All the 
age groups show an increasing incidence over time. However, the 
increase was remarkable for individuals in the 0–4-year, 25–34-year, 
35–44-year and 45–54-year age groups. The reason for increased 
TB incidence could be attributed to the adverse effects of HIV, which 
were not explicitly included in this model. HIV infection causes about a 
tenfold increase in TB incidence with a much higher risk in patients who 
have clinically advanced disease.8 However, projected decreases were 
observed in the 15–24-year age group (Figure 5c) and in those above 
65 years (Figure 5h and 5i).

Discussion
Clinical data indicate that the HIV epidemic has played a role in shifting 
the TB epidemic to younger age groups. In 1996–1997, the largest 
number of TB notifications was in the age group 40–49. By 2004 it had 
shifted to the 25–30 year olds.9 Here we propose that mathematical 
modelling could improve the understanding of TB dynamics in an area 
with a high HIV prevalence, such as the Western Cape Province. Using 
routinely collected data from the City of Cape Town Health Department, 
we applied a simple but reliable TB model. Our results are useful for 
planning purposes and highlight the importance of age-stratified data for 
prioritising key age groups to target for interventions.

The implications of our findings are that the age groups who have 
the highest incidence rates of active TB disease also have the highest 
contribution in the transmission of TB. In the Cape Town metropole, higher 
incidence rates of TB disease are indicative of co-infection with HIV as 
the higher rates occur in the sexually active population – those between 
the ages of 15 and 49 years. During the fitting process, it was interesting 
to note that there was a direct relationship between mortality as a result 
of TB and infection rate. We noted that the higher the transmission of 
TB, the higher the number of disease-induced deaths. This observation 
is not surprising, especially when we consider the assumption on which 
the model is built. We have also shown that TB incidence will increase 
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Figure 5:	 The best fit model for the projected incidence of TB disease over time at age (a) 2 years, (b) 10 years, (c) 20 years, (d) 30 years, (e) 40 years, 
(f) 50 years, (g) 60 years, (h) 70 years and (i) 80 years.
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in the lower age groups of the population. It is important to note that 
the average contact rate decreases with age. TB is easily transmitted 
to children whose immune systems are generally vulnerable. Figure 6 
shows how the average contact rate changes with age, with each marker 
giving the mean transmission rate for a given age group.
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Figure 6:	 Average contact rate across age.

It is important to take epidemiological modelling from a theoretical realm 
to apply it to real-world scenarios. This process is usually littered with 
approximation errors, under- and/or overestimation of parameters and 
flawed modelling exercises. While these factors do not invalidate the 
usefulness of mathematical models as tools to understand dynamic 
systems, it is clearly evident that even very simple models applied to 
limited data can actually give valuable insights. Like every modelling 
exercise, this work is not without limitations. TB is a disease that is 
usually influenced by socio-economic conditions. Differences in living 
conditions should also be further considered. The most important 
aspect to consider in future models is HIV/AIDS, which will allow us to 
conclude extrapulmonary TB cases that are linked to HIV. 

TB is the most common presenting opportunistic infection in HIV-infected 
individuals. The routinely collected data used in this model should also 
include HIV cases stratified according to age, which will increase the 
robustness of such mathematical models. Indeed, simply focusing on 
TB alone in an area with high prevalence of HIV, is a sizeable limitation. 
However, despite these limitations, some interesting results were 
obtained. Future work should be extended to the whole of South Africa 
and refinements should be made for as long as these epidemics endure.
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